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Part 1: The Kernel Trick: Motivation
So far, the majority of the machine learning models we have seen have been linear.

In this lecture, we will see a general way to make many of these models non-linear. We willl
use a new idea called kernels.



Review: Linear Regression
Recall that a linear model has the form

where  is a vector of features and we used the notation .
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We pick  to minimize the (L2-regularized) mean squared error (MSE):%
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Towards General Non-Linear Features
Any non-linear feature map  can be used to obtain general models of the
form

that are highly non-linear in  but linear in .
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The Featurized Design Matrix
It is useful to represent the featurized dataset as a matrix :Φ ∈ ℝ'×,
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Featurized Normal Equations
The normal equations provide a closed-form solution for :

When the vectors of attributes  are featurized, we can write this as
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Push-Through Matrix Identity
We can modify this expression by using a version of the 

:

where  and  and 

push-through matrix identity
(https://en.wikipedia.org/wiki/Woodbury_matrix_identity#Discussion)

(*. + /0 / = /(*. + 0 /)−1 )−1

/ ∈ ℝ'×1 0 ∈ ℝ1×' * ≠ 0

Proof sketch: Start with  and multiply both sides by 
 on the right and  on the left.
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https://en.wikipedia.org/wiki/Woodbury_matrix_identity#Discussion


Normal Equations: Dual Form
We can apply the identity  to the normal equations
with  and .

to obtain the dual form:

The first approach takes  time; the second is  and is faster when .
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Feature Representations for Parameters
An interesting corollary of the dual form

is that the optimal  is a linear combination of the  training set features:
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Predictions From Features
Consider now a prediction  at a new input :

The crucial observation is that the features  are never used directly in this equation.
Only their dot product is used!

This observation will be at the heart of a powerful new idea called the kernel trick.
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Learning From Feature Products
We also don't need features  for learning , just their dot product! First, recall that each
row  of  is the -th featurized input .
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We can compute  and use it for predictions

and all this only requires dot products, not features !
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The Kernel Trick
The above observations hint at a powerful new idea -- if we can compute dot products of
features  efficiently, then we will be able to use high-dimensional features easily.

It turns our that we can do this for many ML algorithms -- we call this the Kernel Trick.
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Part 2: The Kernel Trick: An Example
Many ML algorithms can be written down as optimization problems in which the features 

 only appear as dot products  that can be computed efficiently.

Let's look at an example.
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Review: Linear Regression
Recall that a linear model has the form

where  is a vector of features and we used the notation .
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Review: Non-Linear Features
Any non-linear feature map  can be used in this way to obtain general
models of the form

that are highly non-linear in  but linear in .
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Review: Featurized Design Matrix
It is useful to represent the featurized dataset as a matrix :Φ ∈ ℝ'×,
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Review: Normal Equations
The normal equations provide a closed-form solution for :

They also can be written in this form:

The first approach takes  time; the second is  and is faster when .
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Learning From Feature Products
An interesting corollary is that the optimal  is a linear combination of the  training set
features:

We can compute a prediction  for  without ever using the features (only their
dot products):

Equally importantly, we can learn  from only dot products.
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Review: Polynomial Regression
Note that a -th degree polynomial

forms a linear model with parameters . This means we can use our

algorithms for linear models to learn non-linear features!
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Specifically, given a one-dimensional continuous variable , we can defining a feature
function  as
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Then the class of models of the form

with parameters  encompasses the set of -degree polynomials. Specifically,

It is non-linear in the input variable , meaning that we can model complex data
relationships.
It is a linear model as a function of the parameters , meaning that we can use our
familiar ordinary least squares algorithm to learn these features.
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The Kernel Trick: A First Example
Can we compute the dot product  of polynomial features  more
efficiently than using the standard definition of a dot product? Let's look at an example.

To start, consider polynomial features  of the form
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For  this looks like$ = 3
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The product of  and  in feature space equals:

Computing this dot product invovles the sum over  terms and takes  time.
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An altenative way of computing the dot product  is to instead compute .
One can check that this has the same result:

However, computing  can be done in only  time!
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This is a very powerful idea:

We can compute the dot product between  features in only  time.
We can use high-dimensional features within ML algorithms that only rely on dot
products (like kernelized ridge regression) without incurring extra costs.
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The Kernel Trick: Polynomial Features
The number of polynomial features  of degree  when 

scales as .
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Algorithm: Kernelized Polynomial Ridge Regression
Type: Supervised learning (Regression)
Model family: Polynomials.
Objective function: -regularized ridge regression.
Optimizer: Normal equations (dual form).
Probabilistic interpretation: No simple interpretation!
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The Kernel Trick: General Idea
Many types of features  have the property that their dot product  can be
computed more efficiently than if we had to form these features explicitly.
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Also, we will see that many algorithms in machine learning can be written down as
optimization problems in which the features  only appear as dot products 

.
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The Kernel Trick means that we can use complex non-linear features within these
algorithms with little additional computational cost.



Examples of algorithms in which we can use the Kernel trick:

Supervised learning algorithms: linear regression, logistic regression, support
vector machines, etc.
Unsupervised learning algorithms: PCA, density estimation.

We will look at more examples shortly.



Part 3: The Kernel Trick in SVMs
Many ML algorithms can be written down as optimization problems in which the features 

 only appear as dot products  that can be computed efficiently.

We will now see how SVMs can benefit from the Kernel Trick as well.
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Review: Binary Classification
Consider a training dataset .

We distinguish between two types of supervised learning problems depnding on the
targets .

1. Regression: The target variable  is continuous: .
2. Binary Classification: The target variable  is discrete and takes on one of 

possible values.

In this lecture, we assume .
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Review: SVM Model Family
We will consider models of the form

where  is the input and  is the target.
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Review: Primal and Dual Formulations
Recall that the the max-margin hyperplane can be formualted as the solution to the
following primal optimization problem.
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The solution to this problem also happens to be given by the following dual problem:
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Review: Primal Solution
We can obtain a primal solution from the dual via the following equation:

Ignoring the  term for now, the score at a new point  will equal
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The Kernel Trick in SVMs
Notice that in both equations, the features  are never used directly. Only their dot product
is used.

If we can compute the dot product efficiently, we can potentially use very complex
features.
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The Kernel Trick in SVMs
More generally, given features , suppose that we have a function 

 that outputs dot products between vectors in 

We will call  the kernel function.
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Recall that an example of a useful kernel function is

because it computes the dot product of polynomial features of degree .
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Then notice that we can rewrite the dual of the SVM as

and predictions at a new point  are given by 
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Using our earlier trick, we can use polynomial features of any degree  in SVMs without
forming these features and at no extra cost!
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Algorithm: Kernelized Support Vector Machine
Classification (Dual Form)

Type: Supervised learning (binary classification)
Model family: Non-linear decision boundaries.
Objective function: Dual of SVM optimization problem.
Optimizer: Sequential minimial optimization.
Probabilistic interpretation: No simple interpretation!



Part 4: Types of Kernels
Now that we saw the kernel trick, let's look at several examples of kernels.



Review: Linear Model Family
We will consider models of the form

where  is the input and  is the target.
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Kernel Trick for Ridge Regression
The normal equations provide a closed-form solution for :

They also can be written in this form:

The first approach takes  time; the second is  and is faster when .
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An interesting corollary is that the optimal  is a linear combination of the  training set
features:

We can compute a prediction  for  without ever using the features (only their
dot products):

Equally importantly, we can learn  from only dot products.
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Review: Kernel Trick in SVMs
Notice that in both equations, the features  are never used directly. Only their dot product
is used.

If we can compute the dot product efficiently, we can potentially use very complex
features.
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Definition: Kernels
The kernel corresponding to features  is a function  that
outputs dot products between vectors in 

We will also consider general functions  and call these kernel
functions.
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Kernels have various intepreations:

The dot product or geometrical angle between  and 
A notion of similarity between  and 

" 6
" 6

In order to illustrate kernels, we will use this dataset.

In [17]: # https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
import numpy as np
import matplotlib.pyplot as plt



from sklearn import svm

# Our dataset and targets
X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, 
-.4), (-.5, 1.2), (-1.5, 2.1), (1, 1),
          (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.
3, 2.1)].T
Y = [0] * 8 + [1] * 8

x_min, x_max = -3, 3
y_min, y_max = -3, 3
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k'
, s=80)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

Out[17]: (-3.0, 3.0)





Example: Linear Kernel
The simplest kind of kernel that exists is called the linear kernel. This simply corresponds
to dot product multiplication of the features:

Applied to an SVM, this corresponds to a linear decision boundary.

5(", 6) = 6"⊤

Below is an example of how we can use the SVM implementation in sklearn  with a

linear kernel.

Internally, this solves the dual SVM optimization problem.



In [20]: # https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
clf = svm.SVC(kernel='linear', gamma=2)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, faceco
lors='none', zorder=10, edgecolors='k')
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k'
)
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],leve
ls=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

Out[20]: (-3.0, 3.0)





Example: Polynomial Kernel
A more interesting example is the polynomial kernel of degree , of which we have already
seen a simple example:

This corresponds to a mapping to a feature space of dimension  that has all

monomials  of degree at most .
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For  this feature map looks like$ = 3
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In [19]: # https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html



In [19]: # https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
clf = svm.SVC(kernel='poly', degree=3, gamma=2)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, faceco
lors='none', zorder=10, edgecolors='k')
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k'
)
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],leve
ls=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

Out[19]: (-3.0, 3.0)





Example: Radial Basis Function Kernel
Another example is the Radial Basis Function (RBF; sometimes called Gaussian) kernel

where  is a hyper-parameter. It's easiest to understand this kernel by viewing it as a
similarity measure.
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We can show that this kernel corresponds to an infinite-dimensional feature map and the
limit of the polynomial kernel as .

To see why that's intuitively the case, consider the Taylor expansion

Each term on the right hand side can be expanded into a polynomial.

, → ∞

exp(− ) ≈ 1 − + − + …||" − 6||2

2<2
||" − 6||2

2<2
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2! ⋅ 4<4
||" − 6||6

3! ⋅ 8<6

We can look at the sklearn  implementation again.

In [29]: # https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
clf = svm.SVC(kernel='rbf', gamma=.5)
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane



plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, faceco
lors='none', zorder=10, edgecolors='k')
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k'
)
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],leve
ls=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

Out[29]: (-3.0, 3.0)





When is  A Kernel?
We've seen that for many features  we can define a kernel function 

 that efficiently computes .

33
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Suppose now that we use some kernel function  in an ML algorithm.
Is there an implicit feature mapping  that corresponds to using K?
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Let's start by defining a necessary condition for  to be associated
with a feature map.

5 :  ×  → [0, ∞]

Suppose that  is a kernel for some feature map , and consider an arbitrary set of 
points .

Consider the matrix  defined as . We

claim that  must be symmetric and positive semidefinite.
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Indeed, it  is symmetric because the dot product  is symmetric.
Moreover, for any ,

Thus if  is a kernel,  must be positive semidefinite for any  points .
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Mercer's Theorem
if  is a kernel,  must be positive semidefinite for any set of  points . It turns out
that it is is also a sufficent condition.

5 4 ' "(()

Theorem. (Mercer) Let  be a kernel function. There exists a
mapping  associated with  if for any  and any dataset  of size 

, if and only if the matrix  defined as  is symmetric and positive

semidefinite.

This characterizes precisely which kernel functions correspond to some .

5 :  ×  → [0, ∞]
+ 5 ' { , , … , }"(1) "(2) "(')

' ≥ 1 4 = 5( , )4(# "(() "(#)
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Pros and Cons of Kernels
Are kernels a free lunch? Not quite.

Kernels allow us to use features  of very large dimension .+ $

However computation is at least , where  is the dataset size. We need to
compute distances , for all .

2( )'2 '
5( , )"(() "(#) (, #

Approximate solutions can be found more quickly, but in practice kernel methods
are not used with today's massive datasets.

However, on small and medium-sized data, kernel methods will be at least as good
as neural nets and probably much easier to train.



Summary: Kernels
A kernel is a function  that defines a notion of similarity over
pairs of vectors in .

5 :  ×  → [0, ∞]


Kernels are often associated with high-dimensional features  and implicitly map
inputs to this feature space.

+

Kernels can be incorporated into many machine learning algorithms, which enables
them to learn highly nonlinear models.



Examples of algorithms in which we can use kernels include:

Supervised learning algorithms: linear regression, logistic regression, support
vector machines, etc.
Unsupervised learning algorithms: PCA, density estimation.

Kernels are very powerful because they can be used throughout machine learning.


