
Lecture 10: Dual Formulation of Support Vector
Machines

Applied Machine Learning
Volodymyr Kuleshov
Cornell Tech

Part 1: Lagrange Duality
In this lecture, we continue looking at Support Vector Machines (SVMs), and define a new
formulation of the max-margin problem.

Before we do that, we start with a general concept -- Lagrange duality.

Review: Maximizing the Margin
We saw that maximizing the margin of a linear model amounts to solving the following
optimization problem.

We are going to look at a different way of optimizing this objective. But first, we start by
defining Lagrange duality.

||!|min
!,!0

1
2 |2

subject to ((! +) ≥ 1 for all "#(") $("))⊤ !0

Constrained Optimization Problems
We will look at constrained optimization problems of the form

where is the optimization objective and each is a constraint.

min
!∈ℝ%

such that

&(!)

(!) ≤ 0 for ' = 1, 2, … , ()'
&(!) (!) : → ℝ)' ℝ%

Our goal is to find a small value of such that the are negative.&(!) (!))'

Optimization with Penalties
Another way of approaching the above goal is via:

for some positive vector of Lagrange multipliers . We call the
Lagrangian.

(!, *) = &(!) + (!)min
! ∑

'=1

(
*')'

* ∈ [0, ∞)((!, *)

If , then we penalize large values of ≥ 0*')'

For large enough , no will be positive --- a valid solution.*')'

Penalties are another way of enforcing constraints.

Penalties vs. Constraints
Penalites and constraints are closely related. Consider our constrained optimization
problem:

min
!∈ℝ%

such that

&(!)

(!) ≤ 0 for ' = 1, 2, … , ()'

We define its primal Lagrange form to be

(!) = (!, *) = (&(!) + (!))min
!∈ℝ%

min
!∈ℝ%

max
*≥0

min
!∈ℝ%

max
*≥0 ∑

'=1

(
*')'

These two forms have the same optimum !!∗

Why is this true? Consider again

(!) = (!, *) = (&(!) + (!))min
!∈ℝ%

min
!∈ℝ%

max
*≥0

min
!∈ℝ%

max
*≥0 ∑

'=1

(
*')'

If a is violated () then is as .)' > 0)' (!, *)max*≥0 ∞ → ∞*'

If no is violated and then the optimal (any other value makes the
objective smaller).

If for all then for all and

)' < 0)' = 0*'

< 0)' ' = 0*' '
(!) = (!, *) = &(!)min

!∈ℝ%
min
!∈ℝ%

max
*≥0

min
!∈ℝ%

Thus, is the solution to our initial optimization problem.(!)min!∈ℝ%

Langrange Dual
Now consider the following problem over :

We call this the Lagrange dual of the primal optimization problem . We can

always construct a dual for the primal.

* ≥ 0

(*) = (!, *) = (&(!) + (!)) .max
*≥0

max
*≥0

min
!∈ℝ%

max
*≥0

min
!∈ℝ% ∑

'=1

(
*')'

(!)min!∈ℝ%

Lagrange Duality
The dual interesting because we always have:

(*) = ≤ (!, *) = (!)max
*≥0

max
*≥0

min
!∈ℝ%

min
!∈ℝ%

max
*≥0

min
!∈ℝ%

Moreover, in many interesting cases, we have

Thus, the primal and the dual are equivalent!

(*) = (!).max
*≥0

min
!∈ℝ%

Example: Regularization
Consider regularized supervised laerning problem with a penalty term:

+(!) + * ⋅ ,(!).min
!∈Θ

We may also enforce an explicit constraint on the complexity of the model:

We will not prove this, but solving this problem is equivalent so solving the penalized
problem for some that's different from .

min
!∈Θ

such that

+(!)

,(!) ≤ *′

* > 0 *′

In other words, we can regularize by explicitly enforcing to be less than a value or we
can penalize .

,(!)
,(!)

We are now going to see another application of Lagrangians in the context of SVMs.

Part 2: Dual Formulation of SVMs
Let's now apply Lagrange duality to support vector machines.

Review: Binary Classification
Consider a training dataset .

We distinguish between two types of supervised learning problems depnding on the
targets .

1. Regression: The target variable is continuous: .
2. Binary Classification: The target variable is discrete and takes on one of

possible values.

In this lecture, we assume .

 = {(,), (,), … , (,)}$(1) #(1) $(2) #(2) $(-) #(-)

#(")

∈   ⊆ ℝ
(= 2

 = {−1, +1}

Review: Linear Model Family
In this lecture, we will work with linear models of the form:

where is a vector of features and is the target. The are the

parameters of the model.

We can represent the model in a vectorized form

($).! = + ⋅ + ⋅ +. . . + ⋅!0 !1 $1 !2 $2 !% $%
$ ∈ ℝ% # ∈ {−1, 1} !/

($) = $ + ..! !⊤ !0

Review: Geometric Margin
We define the geometric margin with respect to a training example as

This also corresponds to the distance from to the hyperplane.

0 (") (,)$(") #(")

= () .0 (") #(") +!⊤$(") !0
||!||

$(")

Review: Maximizing the Margin
We saw that maximizing the margin of a linear model amounts to solving the following
optimization problem.

We are going to look at a different way of optimizing this objective. But first, we start by
defining Lagrange duality.

||!|min
!,!0

1
2 |2

subject to ((! +) ≥ 1 for all "#(") $("))⊤ !0

Review: Penalties vs. Constraints
Penalites and constraints are closely related. Consider our constrained optimization
problem:

min
!∈ℝ%

such that

&(!)

(!) ≤ 0 for ' = 1, 2, … , ()'

We define its primal Lagrange form to be

(!) = (!, *) = (&(!) + (!))min
!∈ℝ%

min
!∈ℝ%

max
*≥0

min
!∈ℝ%

max
*≥0 ∑

'=1

(
*')'

These two forms have the same optimum !!∗

The Lagrangian of the SVM Problem
Consider the following objective, the Langrangian of the max-margin optimization
problem.

Intuitively, we have put each constraint inside the objective function and added a penalty
 to it.

+(!, , *) = ||!| + (1 − ((! +))!0
1
2 |2 ∑

"=1

-
*" #(") $("))⊤ !0

*"

Review: Langrange Dual
Consider the following problem over :

We call this the Lagrange dual of the primal optimization problem . We can

always construct a dual for the primal.

* ≥ 0

(*) = (!, *) = (&(!) + (!)) .max
*≥0

max
*≥0

min
!∈ℝ%

max
*≥0

min
!∈ℝ% ∑

'=1

(
*')'

(!)min!∈ℝ%

The Dual of the SVM Problem
Consider optimizing the above Lagrangian over for any value of .

This objective is quadratic in ; hence it has a single minimum in .

!, !0 *

+(!, , *) = (||!| + (1 − ((! +)))min
!,!0

!0 min
!,!0

1
2 |2 ∑

"=1

-
*" #(") $("))⊤ !0

! !

We can find it by setting the derivative to zero and solving for . This yields:!, !0

!

0

= ∑
"=1

-
*" #(")$(")

= ∑
"=1

-
*" #(")

Substituting this into the Langrangian we obtain the following expression for the dual
:(*) = +(!, , *)max*≥0 max*≥0 min!,!0 !0

max
*

subject to

− (∑
"=1

-
*"

1
2 ∑

"=1

-

∑
'=1

-
*" *' #(")#(') $("))⊤$(')

= 0∑
"=1

-
*" #(")

≥ 0 for all "*"

Lagrange Duality in SVMs
Recall that in general, we have:

(*) = ≤ (!, *) = (!)max
*≥0

max
*≥0

min
!∈ℝ%

min
!∈ℝ%

max
*≥0

min
!∈ℝ%

In the case of the SVM problem, one can show that

Thus, the primal and the dual are equivalent!

(*) = (!).max
*≥0

min
!∈ℝ%

Properties of the Dual
We can make several observations about the dual

This is a constrainted quadratic optimization problem.
The number of variables equals , the number of data points.
Objective only depends on products (more on this soon!)

max
*

subject to

− (∑
"=1

-
*"

1
2 ∑

"=1

-

∑
'=1

-
*" *' #(")#(') $("))⊤$(')

= 0 and ≥ 0 for all "∑
"=1

-
*" #(") *"

*" -
($("))⊤$(/)

When to Solve the Dual
When should we be solving the dual or the primal?

The dimensionality of the primal depends on the number of features. If we have a
few features and many datapoints, we should use the primal.
Conversely, if we have a lot of features, but less datapoints, we want to use the dual.

In the next lecture, we will see how we can use this property to solve machine learning
problems with a very large number of features (even possibly infinite!).

Part 3: Practical Considerations for SVM Duals
We continue our discussion of the dual formulation of the SVM with additional practical
details about the dual formulation is defined an used.

Review: Binary Classification
Consider a training dataset .

We distinguish between two types of supervised learning problems depnding on the
targets .

1. Regression: The target variable is continuous: .
2. Binary Classification: The target variable is discrete and takes on one of

possible values.

In this lecture, we assume .

 = {(,), (,), … , (,)}$(1) #(1) $(2) #(2) $(-) #(-)

#(")

∈   ⊆ ℝ
(= 2

 = {−1, +1}

Review: Primal and Dual Formulations
Recall that the the max-margin hyperplane can be formualted as the solution to the
following primal optimization problem.

||!|min
!,!0

1
2 |2

subject to ((! +) ≥ 1 for all "#(") $("))⊤ !0

The solution to this problem also happens to be given by the following dual problem:

max
*

subject to

− (∑
"=1

-
*"

1
2 ∑

"=1

-

∑
'=1

-
*" *' #(")#(') $("))⊤$(')

= 0∑
"=1

-
*" #(")

≥ 0 for all "*"

Review: Non-Separable Problems
Our dual problem assumes that a linear hyperplane exists. However, what if the classes are
non-separable? Then our optimization problem does not have a solution and we need to
modify it.

Our solution is going to be to make each constraint "soft", by introducing "slack" variables,
which allow the constraint to be violated.

((! +) ≥ 1 − .#(") $("))⊤ !0 1"

In the optimization problem, we assign a penalty to these slack variables to obtain:

This is the primal problem. Let's now form its dual.

2

min
!, ,1!0

subject to

||!| + 21
2 |2 ∑

"=1

-
1"

((! +) ≥ 1 − for all "#(") $("))⊤ !0 1"
≥ 01"

Non-Separable Dual
We can also formulate the dual to this problem. First, the Lagrangian equals

The dual objective of this problem will equal

+(*, 3, !,)!0

||!| + 2 − (((! +) − 1) − .1
2 |2 ∑

"=1

-
1" ∑

"=1

-
*" #(") $("))⊤ !0 ∑

"=1

-
3"1"

(*, 3) = +(*, 3, !,).min
!,!0

!0

As earlier, we can solve for the optimal in closed form and plug back the resulting
values into the objective.

We can then show that the dual takes the following form:

!, !0

max
*

subject to

− (∑
"=1

-
*"

1
2 ∑

"=1

-

∑
'=1

-
*" *' #(")#(') $("))⊤$(')

= 0∑
"=1

-
*" #(")

2 ≥ ≥ 0 for all "*"

Coordinate Descent
Coordinate descent is a general way to optimize functions of multiple variables

:

1. Choose a dimension .
2. Optimize over while keeping the other variables

fixed.

.($)
$ ∈ ℝ%

/ ∈ {1, 2, … , %}
.(, , … , , … ,)$1 $2 $/ $% $/

Here, we visualize coordinate descent applied to a 2D quadratic function.

The red line shows the trajectory of coordinate descent. Each "step" in the trajectory is an
iteration of the algorithm. Image from Wikipedia.

Sequential Minimal Optimization
We can apply a form of coordinate descent to solve the dual:

max
*

subject to

− (∑
"=1

-
*"

1
2 ∑

"=1

-

∑
'=1

-
*" *' #(")#(') $("))⊤$(')

= 0 and 2 ≥ ≥ 0 for all "∑
"=1

-
*" #(") *"

A popular, efficient algorithm is Sequential Minimal Optimization (SMO):

Take a pair , possibly using heuristics to guide choice of .

Reoptimize over while keeping the other variables fixed.

Repeat the above until convergence.

,*" */ ", /
,*" */

Obtaining a Primal Solution from the Dual
Next, assuming we can solve the dual, how do we find a separating hyperplane ?!, !0

Recall that we already found an expression for the optimal (in the separable case) as a
function of :

!∗

*

= .!∗ ∑
"=1

-
*" #(")$(")

Once we know it easy to check that the solution to is given by!∗ !0

= − .!∗
0

(+ (max": =−1#(") !∗)⊤$(") min": =−1#(") !∗)⊤$(")

2

Support Vectors
A powerful property of the SVM dual is that at the optimum, most variables are zero!
Thus, is a sum of a small number of points:

The points for which are precisely the points that lie on the margin (are closest to
the hyperplane).

These are called support vectors.

*"
!

= .!∗ ∑
"=1

-
*" #(")$(")

> 0*"

Notation and The Iris Dataset
To demonstrate how to use the dual version of the SVM, we are going to again use the Iris
flower dataset.

We will look at the binary classificaiton version of this dataset.

In [2]: import numpy as np
import pandas as pd
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris(as_frame=True)
iris_X, iris_y = iris.data, iris.target

subsample to a third of the data points
iris_X = iris_X.loc[::4]
iris_y = iris_y.loc[::4]

create a binary classification dataset with labels +/- 1
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
iris_y2[iris_y2==0] = -1

print part of the dataset
pd.concat([iris_X, iris_y2], axis=1).head()

Out[2]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

0 5.1 3.5 1.4 0.2 -1

4 5.0 3.6 1.4 0.2 -1

8 4.4 2.9 1.4 0.2 -1

12 4.8 3.0 1.4 0.1 -1

16 5.4 3.9 1.3 0.4 -1

Let's visualize this dataset.

In [3]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.ht

ml
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
import warnings
warnings.filterwarnings("ignore")

create 2d version of dataset and subsample it
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))

Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=60, cmap=plt.cm.Paired)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Not Setosa'], loc
='lower right')

Out[3]: <matplotlib.legend.Legend at 0x120be94e0>

We can run the dual version of the SVM by importing an implementation from sklearn :

In [5]: #https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.ht
ml
from sklearn import svm

fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000) # this optimizes the dual
clf = svm.LinearSVC() # this optimizes for the primal
clf.fit(X, iris_y2)

plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

plot decision boundary and margins
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
 linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
 linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6])
plt.ylim([2.25, 4])
plt.show()

Algorithm: Support Vector Machine Classification
(Dual Form)

Type: Supervised learning (binary classification)
Model family: Linear decision boundaries.
Objective function: Dual of SVM optimization problem.
Optimizer: Sequential minimial optimization.
Probabilistic interpretation: No simple interpretation!

