
lecture9-support-vector-machines

March 11, 2022

1 Lecture 9: Support Vector Machines
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Classification Margins
In this lecture, we are going to cover Support Vector Machines (SVMs), one the most successful
classification algorithms in machine learning.

We start the presentation of SVMs by defining the classification margin.

3 Review: Components of A Supervised Machine Learning Prob-
lem

At a high level, a supervised machine learning problem has the following structure:

Training Dataset︸ ︷︷ ︸
Attributes + Features

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Predictive Model

4 Review: Machine Learning Models
A machine learning model is a function

f : X → Y

that maps inputs x ∈ X to targets y ∈ Y .

5 Review: Binary Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Binary Classification: The target variable y is discrete and takes on one of K = 2 possible

values.

In this lecture, we assume Y = {−1,+1}.

1

6 Review: Linear Model Family
In this lecture, we will work with linear models of the form:

fθ(x) = θ0 + θ1 · x1 + θ2 · x2 + ...+ θd · xd

where x ∈ Rd is a vector of features and y ∈ {−1, 1} is the target. The θj are the parameters of
the model.

We can represent the model in a vectorized form

fθ(x) = θ⊤x+ θ0.

7 Notation and The Iris Dataset
In this lecture, we are going to again use the Iris flower dataset.

As we just mentioned, we make two additional assumptions: * We will only consider binary classi-
ficaiton problems. * We will use Y = {−1, 1} as the label space.

[1]: import numpy as np
import pandas as pd
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris(as_frame=True)
iris_X, iris_y = iris.data, iris.target

subsample to a third of the data points
iris_X = iris_X.loc[::4]
iris_y = iris_y.loc[::4]

create a binary classification dataset with labels +/- 1
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
iris_y2[iris_y2==0] = -1

print part of the dataset
pd.concat([iris_X, iris_y2], axis=1).head()

[1]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
0 5.1 3.5 1.4 0.2
4 5.0 3.6 1.4 0.2
8 4.4 2.9 1.4 0.2
12 4.8 3.0 1.4 0.1
16 5.4 3.9 1.3 0.4

target
0 -1
4 -1

2

8 -1
12 -1
16 -1

[2]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
import warnings
warnings.filterwarnings("ignore")

create 2d version of dataset and subsample it
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))

Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=60, cmap=plt.cm.Paired)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Not Setosa'],␣
↪→loc='lower right')

[2]: <matplotlib.legend.Legend at 0x12b01cd30>

8 Comparing Classification Algorithms
We have seen different types approaches to classification.

When fitting a model, there may be many valid decision boundaries. How do we select one of them?

3

Consider the following three classification algorithms from sklearn. Each of them outputs a
different classification boundary.

[3]: from sklearn.linear_model import LogisticRegression, Perceptron, RidgeClassifier
models = [LogisticRegression(), Perceptron(), RidgeClassifier()]

def fit_and_create_boundary(model):
model.fit(X, iris_y2)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return Z

plt.figure(figsize=(12,3))
for i, model in enumerate(models):

plt.subplot('13%d' % (i+1))
Z = fit_and_create_boundary(model)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
plt.title('Algorithm %d' % (i+1))
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

9 Classification Scores
Most classification algorithms output not just a class label but a score. * For example, logistic
regression returns the class probability

p(y = 1| | x) = σ(θ⊤x) ∈ [0, 1]

If the class probability is > 0.5, the model outputs class 1.

The score is an estimate of confidence; it also represents how far we are from the decision boundary.

4

10 The Max-Margin Principle
Intuitively, we want to select boundaries with high margin.

This means that we are as confident as possible for every point and we are as far as possible from
the decision boundary.

Several of the separating boundaries in our previous example had low margin: they came too close
to the boundary.

[4]: from sklearn.linear_model import Perceptron, RidgeClassifier
from sklearn.svm import SVC
models = [SVC(kernel='linear', C=10000), Perceptron(), RidgeClassifier()]

def fit_and_create_boundary(model):
model.fit(X, iris_y2)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return Z

plt.figure(figsize=(12,3))
for i, model in enumerate(models):

plt.subplot('13%d' % (i+1))
Z = fit_and_create_boundary(model)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
if i == 0:

plt.title('Good Margin')
else:

plt.title('Bad Margin')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

5

Below, we plot a decision boundary between the two classes (solid line) that has a high margin.
The two dashed lines that lie at the margin.

Points that are the margin are highlighted in black. A good decision boundary is as far away as
possible from the points at the margin.

[5]: #https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.
↪→html

from sklearn import svm

fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000) # we'll explain this algorithm shortly
clf.fit(X, iris_y2)

plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

plot decision boundary and margins
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,

linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6])
plt.ylim([2.25, 4])

[5]: (2.25, 4.0)

6

11 The Functional Classification Margin
How can we define the concept of margin more formally?

We can try to define the margin γ̃(i) with respect to a training example (x(i), y(i)) as

γ̃(i) = y(i) · f(x(i)) = y(i) ·
(
θ⊤x(i) + θ0

)
.

We call this the functional margin. Let’s analyze it.

We defined the functional margin as

γ̃(i) = y(i) ·
(
θ⊤x(i) + θ0

)
.

• If y(i) = 1, then the margin γ̃(i) is large when the model score f(x(i)) = θ⊤x(i)+ θ0 is positive
and large.

• Thus, we are classifying x(i) correctly and with high confidence.

• If y(i) = −1, then the margin γ̃(i) is large when the model score f(x(i)) = θ⊤x(i) + θ0 is
negative and large in absolute value.

• We are again classifying x(i) correctly and with high confidence.

7

Thus higher margin means higher confidence at each input point.

However, we have a problem. * If we rescale the parameters θ, θ0 by a scalar α > 0, we get new
parameters αθ, αθ0 * The αθ, αθ0 doesn’t change the classification of points. * However, the margin(
αθ⊤x(i) + αθ0

)
= α

(
θ⊤x(i) + θ0

)
is now scaled by α!

It doesn’t make sense that the same classification boundary can have different margins when we
rescale it.

12 The Geometric Classification Margin
We define the geometric margin γ(i) with respect to a training example (x(i), y(i)) as

γ(i) = y(i)

(
θ⊤x(i) + θ0

||θ||

)
.

• We normalize the functional margin by ||θ||
• Rescaling the weights can no longer make the margin arbitrarily large, which addresses our

previous issue.

Let’s again make sure our intuition about the margin holds.

γ(i) = y(i)

(
θ⊤x(i) + θ0

||θ||

)
.

• If y(i) = 1, then the margin γ(i) is large when the model score f(x(i)) = θ⊤x(i)+ θ0 is positive
and large.

• Thus, we are classifying x(i) correctly and with high confidence.

• The same holds when y(i) = −1. We again capture our intuition that increasing margin
means increasing the confidence of each input point.

13 Geometric Intuitions
The margin γ(i) is called geometric because it corresponds to the distance from x(i) to the separating
hyperplane θ⊤x+ θ0 = 0 (dashed line below).

Suppose that y(i) = 1 (x(i) lies on positive side of boundary). Then: 1. The points x that lie on
the deicision boundary are those for which θ⊤x+ θ0 = 0 (score is precisely zero, and between 1 and
-1).

2. The vector θ
||θ|| is perpedicular to the hyperplane θ⊤x + θ0 and has unit norm (fact from

calculus).

3. Let x0 be the point on the boundary closest to x(i). Then by definition of the margin
x(i) = x0 + γ(i) θ

||θ|| or

x0 = x(i) − γ(i)
θ

||θ||
.

8

4. Since x0 is on the hyperplane, θ⊤x0 + θ0 = 0, or

θ⊤
(
x(i) − γ(i)

θ

||θ||

)
+ θ0 = 0.

5. Solving for γ(i) and using the fact that θ⊤θ = ||θ||2, we obtain

γ(i) =
θ⊤x(i) + θ0

||θ||
.

Which is our geometric margin. The case of y(i) = −1 can also be proven in a similar way.

We can use our formula for γ to precisely plot the margins on our earlier plot.

[6]: # plot decision boundary and margins
plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,

linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6.1])
plt.ylim([2.25, 4])

plot margin vectors
theta = clf.coef_[0]
theta0 = clf.intercept_
for idx in clf.support_[:3]:

x0 = X[idx]
y0 = iris_y2.iloc[idx]
margin_x0 = (theta.dot(x0) + theta0)[0] / np.linalg.norm(theta)
w = theta / np.linalg.norm(theta)
plt.plot([x0[0], x0[0]-w[0]*margin_x0], [x0[1], x0[1]-w[1]*margin_x0],␣

↪→color='blue')
plt.scatter([x0[0]-w[0]*margin_x0], [x0[1]-w[1]*margin_x0], color='blue')

plt.show()

9

Part 2: The Max-Margin Classifier

We have seen a way to measure the confidence level of a classifier at a data point using the notion
of a margin.

Next, we are going to see how to maximize the margin of linear classifiers.

14 Review: Linear Model Family
In this lecture, we consider classification with linear models of the form:

fθ(x) = θ0 + θ1 · x1 + θ2 · x2 + ...+ θd · xd

where x ∈ Rd is a vector of features and y ∈ {−1, 1} is the target. The θj are the parameters of
the model.

We can represent the model in a vectorized form

fθ(x) = θ⊤x+ θ0.

10

15 Review: Geometric Margin
We define the geometric margin γ(i) with respect to a training example (x(i), y(i)) as

γ(i) = y(i)

(
θ⊤x(i) + θ0

||θ||

)
.

This also corresponds to the distance from x(i) to the hyperplane.

16 Maximizing the Margin
We want to define an objective that will result in maximizing the margin. As a first attempt,
consider the following optimization problem.

max
θ,θ0,γ

γ

subject to y(i)
(x(i))⊤θ + θ0

||θ||
≥ γ for all i

This is maximies the smallest margin over the (x(i), y(i)). It guarantees each point has margin at
least γ.

17 Maximizing the Margin
This problem is difficult to optimize because of the division by ||θ|| and we would like to simplify
it. First, consider the equivalent problem:

max
θ,θ0,γ

γ

subject to y(i)((x(i))⊤θ + θ0) ≥ γ||θ|| for all i

Note that this problem has an extra degree of freedom: * Suppose we multiply θ, θ0 by some
constant c > 0 * This yields another valid solution!

To enforce uniqueness, we add another constraint that doesn’t change the minimizer:

||θ|| = 1

γ
.

This ensures we cannot rescale θ and also asks our linear model to assign each x(i) a score of at
least ±1:

y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

18 Maximizing the Margin
If we constraint ||θ|| = 1

γ holds, then we know that γ = 1/θ and we can replace γ in the optimization
problem to obtain:

max
θ,θ0

1

||θ||
subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

11

The solution of this problem is still the same.

19 Maximizing the Margin: Final Version
Finally, instead of maximizing 1/θ, we can minimize θ, or equvalently we can minimize 1

2 ||θ||
2.

min
θ,θ0

1

2
||θ||2

subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

This is now a quadratic program that can be solved using off-the-shelf optimization algorithms!

20 Algorithm: Linear Support Vector Machine Classification
• Type: Supervised learning (binary classification)
• Model family: Linear decision boundaries.
• Objective function: Max-margin optimization.
• Optimizer: Quadratic optimization algorithms.
• Probabilistic interpretation: No simple interpretation!

Later, we will see several other versions of this algorithm.

Part 3: Soft Margins and the Hinge Loss

Let’s continue looking at how we can maximize the margin.

21 Review: Maximizing the Margin
We saw that maximizing the margin amounts to solving the following optimization problem.

min
θ,θ0

1

2
||θ||2

subject to y(i)((x(i))⊤θ + θ0) ≥ 1 for all i

This is now a quadratic program that can be solved using off-the-shelf optimization algorithms.

22 Non-Separable Problems
So far, we have assume that a linear hyperplane exists. However, what if the classes are non-
separable? Then our optimization problem does not have a solution and we need to modify it.

Our solution is going to be to make each constraint “soft”, by introducing “slack” variables, which
allow the constraint to be violated.

y(i)((x(i))⊤θ + θ0) ≥ 1− ξi.

* If we can classify each point with a perfect score of ≥ 1, the ξi = 0. * If we cannot assign a
perfect score, we assign a score of 1 − ξi. * We define optimization such that the ξi are chosen to
be as small as possible.

12

In the optimization problem, we assign a penalty C to these slack variables to obtain:

min
θ,θ0,ξ

1

2
||θ||2 + C

n∑
i=1

ξi

subject to y(i)
(
(x(i))⊤θ + θ0

)
≥ 1− ξi for all i

ξi ≥ 0

23 Towards an Unconstainted Objective
Let’s further modify things. Moving around terms in the inequality we get:

min
θ,θ0,ξ

1

2
||θ||2 + C

n∑
i=1

ξi

subject to ξi ≥ 1− y(i)
(
(x(i))⊤θ + θ0

)
ξi ≥ 0 for all i

If 0 ≥ 1− y(i)
(
(x(i))⊤θ + θ0

)
, we classified x(i) perfectly and ξi = 0

If 0 < 1− y(i)
(
(x(i))⊤θ + θ0

)
, then ξi = 1− y(i)

(
(x(i))⊤θ + θ0

)
Thus, ξi = max

(
1− y(i)

(
(x(i))⊤θ + θ0

)
, 0
)
.

We simplify notation a bit by using the notation (x)+ = max(x, 0).

This yields:

ξi = max
(
1− y(i)

(
(x(i))⊤θ + θ0

)
, 0
)
:=
(
1− y(i)

(
(x(i))⊤θ + θ0

))+
24 Towards an Unconstainted Objective

Since ξi =
(
1− y(i)

(
(x(i))⊤θ + θ0

))+, we can take

min
θ,θ0,ξ

1

2
||θ||2 + C

n∑
i=1

ξi

subject to ξi ≥ 1− y(i)
(
(x(i))⊤θ + θ0

)
ξi ≥ 0 for all i

And we turn it into the following by plugging in the definition of ξi:

min
θ,θ0

1

2
||θ||2 + C

n∑
i=1

(
1− y(i)

(
(x(i))⊤θ + θ0

))+
Since it doesn’t matter which term we multiply by C > 0, this is equivalent to

min
θ,θ0,ξ

n∑
i=1

(
1− y(i)

(
(x(i))⊤θ + θ0

))+
+

λ

2
||θ||2

for some λ > 0.

13

25 An Unconstrained Objective
We have now turned our optimizatin problem into an unconstrained form:

min
θ,θ0

n∑
i=1

(
1− y(i)

(
(x(i))⊤θ + θ0

))+
︸ ︷︷ ︸

hinge loss

+
λ

2
||θ||2︸ ︷︷ ︸

regularizer

• The hinge loss penalizes incorrect predictions.
• The L2 regularizer ensures the weights are small and well-behaved.

26 The Hinge Loss
Consider again our new loss term for a label y and a prediction f :

L(y, f) = max (1− y · f, 0) .

• If prediction f has same class as y, and |f | ≥ 1, the loss is zero.
– If class correct, no penalty if score f is larger than target y.

• If the prediction f is of the wrong class, or |f | ≤ 1, loss is |y − f |.

Let’s visualize a few losses L(y = 1, f), as a function of f , including hinge.

[7]: # define the losses for a target of y=1
hinge_loss = lambda f: np.maximum(1 - f, 0)
l2_loss = lambda f: (1-f)**2
l1_loss = lambda f: np.abs(f-1)

plot them
fs = np.linspace(0, 2)
plt.plot(fs, l1_loss(fs), fs, l2_loss(fs), fs, hinge_loss(fs), linewidth=9,␣
↪→alpha=0.5)

plt.legend(['L1 Loss', 'L2 Loss', 'Hinge Loss'])
plt.xlabel('Prediction f')
plt.ylabel('L(y=1,f)')

[7]: Text(0, 0.5, 'L(y=1,f)')

14

• The hinge loss is linear like the L1 loss.
• But it only penalizes errors that are on the “wrong” side:

– We have an error of |f − y| if true class is 1 and f < 1
– We don’t penalize for predicting f > 1 if true class is 1.

[8]: plt.plot(fs, hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])

[8]: <matplotlib.legend.Legend at 0x12e750a58>

27 Properties of the Hinge Loss
The hinge loss is one of the best losses in machine learning! * It penalizes errors “that matter”,
hence is less sensitive to outliers. * Minimizing a regularized hinge loss optimizes for a high margin.
* The loss is non-differentiable at point, which may make it more challenging to optimize.

Part 4: Optimization for SVMs

We have seen a new way to formulate the SVM objective. Let’s now see how to optimize it.

28 Review: Linear Model Family
In this lecture, we consider classification with linear models of the form:

fθ(x) = θ0 + θ1 · x1 + θ2 · x2 + ...+ θd · xd

where x ∈ Rd is a vector of features and y ∈ {−1, 1} is the target. The θj are the parameters of
the model.

We can represent the model in a vectorized form

fθ(x) = θ⊤x+ θ0.

15

29 Review: The Hinge Loss
The hinge loss for a label y and a prediction f is:

L(y, f) = max (1− y · f, 0) .

• The hinge loss is linear like the L1 loss.
• But it only penalizes errors that are on the side of the wrong class.

[9]: plt.plot(hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])

[9]: <matplotlib.legend.Legend at 0x12e931550>

30 Review: SVM Objective
Maximizing the margin can be done in the following form:

min
θ,θ0,ξ

n∑
i=1

(
1− y(i)

(
(x(i))⊤θ + θ0

))+
︸ ︷︷ ︸

hinge loss

+
λ

2
||θ||2︸ ︷︷ ︸

regularizer

• The hinge loss penalizes incorrect predictions.
• The L2 regularizer ensures the weights are small and well-behaved.

We can easily implement this objective in numpy.

First we define the model.

[10]: def f(X, theta):
"""The linear model we are trying to fit.

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional data matrix

16

Returns:
y_pred (np.array): n-dimensional vector of predicted targets
"""
return X.dot(theta)

And then we define the objective.

[11]: def svm_objective(theta, X, y, C=.1):
"""The cost function, J, describing the goodness of fit.

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets
"""
return (np.maximum(1 - y * f(X, theta), 0) + C * 0.5 * np.linalg.

↪→norm(theta[:-1])**2).mean()

31 Review: Gradient Descent
If we want to optimize J(θ), we start with an initial guess θ0 for the parameters and repeat the
following update:

θi := θi−1 − α · ∇θJ(θi−1).

As code, this method may look as follows:

theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:

theta_prev = theta
theta = theta_prev - step_size * gradient(theta_prev)

32 A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear f?

J(θ) = max (1− y · fθ(x), 0) = max
(
1− y · θ⊤x, 0

)
.

Here, you see the linear part of J that behaves like 1− y · fθ(x) (when y · fθ(x) < 1) in orange:

[12]: plt.plot(fs, hinge_loss(fs),fs[:25], hinge_loss(fs[:25]), linewidth=9, alpha=0.
↪→5)

plt.legend(['Hinge Loss', 'Hinge Loss when $y \cdot f < 1$'])

[12]: <matplotlib.legend.Legend at 0x12ea6f940>

17

When y · fθ(x) < 1, we are in the “line” part and J(θ) behaves a like 1− y · fθ(x)

Our objective is
J(θ) = max (1− y · fθ(x), 0) = max

(
1− y · θ⊤x, 0

)
.

Hence the gradient in this regime is:

∇θJ(θ) = −y · ∇fθ(x) = −y · x

where we used ∇θθ
⊤x = x.

33 A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear f?

J(θ) = max (1− y · fθ(x), 0) = max
(
1− y · θ⊤x, 0

)
.

• When y · fθ(x) < 1, we are in the “flat” part and J(θ) = 0
• Hence the gradient is also just zero!

34 A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear f?

J(θ) = max (1− y · fθ(x), 0) = max
(
1− y · θ⊤x, 0

)
.

When y · fθ(x) = 1, we are in the “kink”, and the gradient is not defined! * In practice, we can
either take the gradient when y ·fθ(x) > 1 or the gradient when y ·fθ(x) < 1 or anything in between.
This is called the subgradient.

35 A Steepest Descent Direction for the Hinge Loss
We can define a “gradient” like function ∇̃θJ(θ) for the hinge loss

J(θ) = max (1− y · fθ(x), 0) = max
(
1− y · θ⊤x, 0

)
.

18

It equals:

∇̃θJ(θ) =

{
−y · x if y · fθ(x) > 1

0 otherwise

36 Subgradient Descent for SVM
Putting this together, we obtain a complete learning algorithm, based on an optimization procedure
called subgradient descent.

theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:

theta_prev = theta
theta = theta_prev - step_size * approximate_gradient

Let’s implement this algorithm.

First we implement the approximate gradient.

[13]: def svm_gradient(theta, X, y, C=.1):
"""The (approximate) gradient of the cost function.

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets

Returns:
subgradient (np.array): d-dimensional subgradient
"""
yy = y.copy()
yy[y*f(X,theta)>=1] = 0
subgradient = np.mean(-yy * X.T, axis=1)
subgradient[:-1] += C * theta[:-1]
return subgradient

And then we implement subgradient descent.

[14]: threshold = 5e-4
step_size = 1e-2

theta, theta_prev = np.ones((3,)), np.zeros((3,))
iter = 0
iris_X['one'] = 1
X_train = iris_X.iloc[:,[0,1,-1]].to_numpy()
y_train = iris_y2.to_numpy()

while np.linalg.norm(theta - theta_prev) > threshold:
if iter % 1000 == 0:

19

print('Iteration %d. J: %.6f' % (iter, svm_objective(theta, X_train,␣
↪→y_train)))

theta_prev = theta
gradient = svm_gradient(theta, X_train, y_train)
theta = theta_prev - step_size * gradient
iter += 1

Iteration 0. J: 3.728947
Iteration 1000. J: 0.376952
Iteration 2000. J: 0.359075
Iteration 3000. J: 0.351587
Iteration 4000. J: 0.344411
Iteration 5000. J: 0.337912
Iteration 6000. J: 0.331617
Iteration 7000. J: 0.326604
Iteration 8000. J: 0.322224
Iteration 9000. J: 0.319250
Iteration 10000. J: 0.316727
Iteration 11000. J: 0.314800
Iteration 12000. J: 0.313181
Iteration 13000. J: 0.311843
Iteration 14000. J: 0.310667
Iteration 15000. J: 0.309561
Iteration 16000. J: 0.308496
Iteration 17000. J: 0.307523
Iteration 18000. J: 0.306614
Iteration 19000. J: 0.305768
Iteration 20000. J: 0.305068
Iteration 21000. J: 0.304293

We can visualize the results to convince ourselves we found a good boundary.

[15]: xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = f(np.c_[xx.ravel(), yy.ravel(), np.ones(xx.ravel().shape)], theta)
Z[Z<0] = 0
Z[Z>0] = 1

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.
↪→cm.Paired)

plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

20

37 Algorithm: Linear Support Vector Machine Classification
• Type: Supervised learning (binary classification)
• Model family: Linear decision boundaries.
• Objective function: L2-regularized hinge loss.
• Optimizer: Subgradient descent.
• Probabilistic interpretation: No simple interpretation!

21

	Lecture 9: Support Vector Machines
	Applied Machine Learning

	Part 1: Classification Margins
	Review: Components of A Supervised Machine Learning Problem
	Review: Machine Learning Models
	Review: Binary Classification
	Review: Linear Model Family
	Notation and The Iris Dataset
	Comparing Classification Algorithms
	Classification Scores
	The Max-Margin Principle
	The Functional Classification Margin
	The Geometric Classification Margin
	Geometric Intuitions
	Review: Linear Model Family
	Review: Geometric Margin
	Maximizing the Margin
	Maximizing the Margin
	Maximizing the Margin
	Maximizing the Margin: Final Version
	Algorithm: Linear Support Vector Machine Classification
	Review: Maximizing the Margin
	Non-Separable Problems
	Towards an Unconstainted Objective
	Towards an Unconstainted Objective
	An Unconstrained Objective
	The Hinge Loss
	Properties of the Hinge Loss
	Review: Linear Model Family
	Review: The Hinge Loss
	Review: SVM Objective
	Review: Gradient Descent
	A Gradient for the Hinge Loss?
	A Gradient for the Hinge Loss?
	A Gradient for the Hinge Loss?
	A Steepest Descent Direction for the Hinge Loss
	Subgradient Descent for SVM
	Algorithm: Linear Support Vector Machine Classification

