
lecture8-naive-bayes

March 11, 2022

1 Lecture 8: Naive Bayes
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Text Classification
We will now do a quick detour to talk about an important application area of machine learning:
text classification.

Afterwards, we will see how text classification motivates new classification algorithms.

3 Review: Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Classification: The target variable y is discrete and takes on one of K possible values:

Y = {y1, y2, . . . yK}. Each discrete value corresponds to a class that we want to predict.

4 Text Classification
An interesting instance of a classification problem is classifying text. * Includes a lot applied prob-
lems: spam filtering, fraud detection, medical record classification, etc. * Inputs x are sequences of
words of an arbitrary length. * The dimensionality of text inputs is usually very large, proportional
to the size of the vocabulary.

5 Classification Dataset: Twenty Newsgroups
To illustrate the text classification problem, we will use a popular dataset called 20-newsgroups. *
It contains ~20,000 documents collected approximately evenly from 20 different online newsgroups.
* Each newgroup covers a different topic such as medicine, computer graphics, or religion. * This
dataset is widely used to benchmark text classification and other types of algorithms.

Let’s load this dataset.

1

[1]: #https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.
↪→html

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups

for this lecture, we will restrict our attention to just 4 different␣
↪→newsgroups:

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.
↪→med']

load the dataset
twenty_train = fetch_20newsgroups(subset='train', categories=categories,␣
↪→shuffle=True, random_state=42)

print some information on it
print(twenty_train.DESCR[:1100])

.. _20newsgroups_dataset:

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.

This module contains two loaders. The first one,
:func:`sklearn.datasets.fetch_20newsgroups`,
returns a list of the raw texts that can be fed to text feature
extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`
with custom parameters so as to extract feature vectors.
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.

Data Set Characteristics:

================= ==========
Classes 20
Samples total 18846
Dimensionality 1
Features text
================= ==========

2

Usage
~~~~~

[2]: # The set of targets in this dataset are the newgroup topics:
twenty_train.target_names

[2]: ['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

[3]: # Let's examine one data point
print(twenty_train.data[3])

From: s0612596@let.rug.nl (M.M. Zwart)
Subject: catholic church poland
Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL
Lines: 10

Hello,

I'm writing a paper on the role of the catholic church in Poland after 1989.
Can anyone tell me more about this, or fill me in on recent books/articles(
in english, german or french). Most important for me is the role of the
church concerning the abortion-law, religious education at schools,
birth-control and the relation church-state(government). Thanx,

Masja,
"M.M.Zwart"<s0612596@let.rug.nl>

[4]: # We have about 2k data points in total
print(len(twenty_train.data))

2257

6 Feature Representations for Text
Each data point x in this dataset is a squence of characters of an arbitrary length.

How do we transform these into d-dimensional features ϕ(x) that can be used with our machine
learning algorithms?

• We may devise hand-crafted features by inspecting the data:
– Does the message contain the word “church”? Does the email of the user originate

outside the United States? Is the organization a university? etc.

• We can count the number of occurrences of each word:
– Does this message contain “Aardvark”, yes or no?
– Does this message contain “Apple”, yes or no?

3



– … Does this message contain “Zebra”, yes or no?

• Finally, many modern deep learning methods can directly work with sequences of characters
of an arbitrary length.

7 Bag of Words Representations
Perhaps the most widely used approach to representing text documents is called “bag of words”.

We start by defining a vocabulary V containing all the possible words we are interested in, e.g.:

V = {church, doctor, fervently, purple, slow, ...}

A bag of words representation of a document x is a function ϕ(x) → {0, 1}|V | that outputs a feature
vector

ϕ(x) =



0
1
0
...
0
...



church
doctor
fervently

purple

of dimension V . The j-th component ϕ(x)j equals 1 if x convains the j-th word in V and 0
otherwise.

Let’s see an example of this approach on 20-newsgroups.

We start by computing these features using the sklearn library.

[5]: from sklearn.feature_extraction.text import CountVectorizer

# vectorize the training set
count_vect = CountVectorizer(binary=True)
X_train = count_vect.fit_transform(twenty_train.data)
X_train.shape

[5]: (2257, 35788)

In sklearn, we can retrieve the index of ϕ(x) associated with each word using the expression
count_vect.vocabulary_.get(word):

[6]: # The CountVectorizer class records the index j associated with each word in V
print('Index for the word "church": ', count_vect.vocabulary_.get(u'church'))
print('Index for the word "computer": ', count_vect.vocabulary_.
↪→get(u'computer'))

Index for the word "church": 8609
Index for the word "computer": 9338

Our featurized dataset is in the matrix X_train. We can use the above indices to retrieve the 0-1
value that has been computed for each word:

4



[7]: # We can examine if any of these words are present in our previous datapoint
print(twenty_train.data[3])

# let's see if it contains these two words?
print('---'*20)
print('Value at the index for the word "church": ', X_train[3, count_vect.
↪→vocabulary_.get(u'church')])

print('Value at the index for the word "computer": ', X_train[3, count_vect.
↪→vocabulary_.get(u'computer')])

print('Value at the index for the word "doctor": ', X_train[3, count_vect.
↪→vocabulary_.get(u'doctor')])

print('Value at the index for the word "important": ', X_train[3, count_vect.
↪→vocabulary_.get(u'important')])

From: s0612596@let.rug.nl (M.M. Zwart)
Subject: catholic church poland
Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL
Lines: 10

Hello,

I'm writing a paper on the role of the catholic church in Poland after 1989.
Can anyone tell me more about this, or fill me in on recent books/articles(
in english, german or french). Most important for me is the role of the
church concerning the abortion-law, religious education at schools,
birth-control and the relation church-state(government). Thanx,

Masja,
"M.M.Zwart"<s0612596@let.rug.nl>

------------------------------------------------------------
Value at the index for the word "church": 1
Value at the index for the word "computer": 0
Value at the index for the word "doctor": 0
Value at the index for the word "important": 1

8 Practical Considerations
In practice, we may use some additional modifications of this techinque:

• Sometimes, the feature ϕ(x)j for the j-th word holds the count of occurrences of word j
instead of just the binary occurrence.

• The raw text is usually preprocessed. One common technique is stemming, in which we only
keep the root of the word.

– e.g. “slowly”, “slowness”, both map to “slow”

• Filtering for common stopwords such as “the”, “a”, “and”. Similarly, rare words are also
typically excluded.

5



9 Classification Using BoW Features
Let’s now have a look at the performance of classification over bag of words features.

Now that we have a feature representation ϕ(x), we can apply the classifier of our choice, such as
logistic regression.

[8]: from sklearn.linear_model import LogisticRegression

# Create an instance of Softmax and fit the data.
logreg = LogisticRegression(C=1e5, multi_class='multinomial', verbose=True)
logreg.fit(X_train, twenty_train.target)

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 1.0s finished

[8]: LogisticRegression(C=100000.0, multi_class='multinomial', verbose=True)

And now we can use this model for predicting on new inputs.

[9]: docs_new = ['God is love', 'OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new)
predicted = logreg.predict(X_new)

for doc, category in zip(docs_new, predicted):
print('%r => %s' % (doc, twenty_train.target_names[category]))

'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics

10 Summary of Text Classification
• Classifying text normally requires specifiyng features over the raw data.
• A widely used representation is “bag of words”, in which features are occurrences or counts

of words.

• Once text is featurized, any off-the-shelf supervised learning algorithm can be applied, but
some work better than others, as we will see next.

# Part 2: Naive Bayes

Next, we are going to look at Naive Bayes — a generative classification algorithm. We will apply
Naive Bayes to the text classification problem.

11 Review: Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.

6



2. Classification: The target variable y is discrete and takes on one of K possible values:
Y = {y1, y2, . . . yK}. Each discrete value corresponds to a class that we want to predict.

12 Review: Text Classification
An interesting instance of a classification problem is classifying text. * Includes a lot applied prob-
lems: spam filtering, fraud detection, medical record classification, etc. * Inputs x are sequences of
words of an arbitrary length. * The dimensionality of text inputs is usually very large, proportional
to the size of the vocabulary.

13 Review: Bag of Words Features
Given a vocabulary V , a bag of words representation of a document x is a function ϕ(x) → {0, 1}|V |

that outputs a feature vector

ϕ(x) =



0
1
0
...
0
...



church
doctor
fervently

purple

of dimension |V |. The j-th component ϕ(x)j equals 1 if x convains the j-th word in V and 0
otherwise.

14 Review: Generative Models
There are two types of probabilistic models: generative and discriminative.

Pθ(x, y) : X × Y → [0, 1]︸ ︷︷ ︸
generative model

Pθ(y|x) : X × Y → [0, 1]︸ ︷︷ ︸
discriminative model

Given a new datapoint x′, we can match it against each class model and find the class that looks
most similar to it:

argmax
y

log p(y|x) = argmax
y

log p(x|y)p(y)
p(x)

= argmax
y

log p(x|y)p(y),

where we have applied Bayes’ rule in the second equation.

15 Review: Gaussian Discriminant Model
The GDA algorithm defines the following model family. * The probability P (x | y = k) of the data
under class k is a multivariate Gaussian N (x;µk,Σk) with parameters µk,Σk. * The distribution
over classes is Categorical, denoted Categorical(ϕ1, ϕ2, ..., ϕK). Thus, Pθ(y = k) = ϕk.

Thus, Pθ(x, y) is a mixture of K Gaussians:

Pθ(x, y) =
K∑
k=1

Pθ(y = k)Pθ(x|y = k) =
K∑
k=1

ϕkN (x;µk,Σk)

7

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Categorical_distribution


16 Problem 1: Discrete Data
What would happen if we used GDA to perform text classification? The first problem we face is
that the input data is discrete:

ϕ(x) =



0
1
0
...
0
...



church
doctor
fervently

purple

This data does not follows a Normal distribution, hence the GDA model is clearly misspecified.

17 Problem 2: High Dimensionality
A first solution is to assume that x is sampled from a categorical distribution that assigns a
probability to each possible state of x.

p(x) = p


0
1
0
...
0

church
doctor
fervently
...
purple

 = 0.0012

However, if the dimensionality d of x is high (e.g., vocabulary has size 10,000), x can take a huge
number of values (210000 in our example). We need to specify 2d− 1 parameters for the categorical
distribution.

18 Naive Bayes Assumption
In order to deal with high-dimensional x, we simplify the problem by making the Naive Bayes
assumption:

p(x|y) =
d∏
j=1

p(xj | y)

In other words, the probability p(x|y) factorizes over each dimension.

• For example, if x is a binary bag of words representation, then p(xj |y) is the probability of
seeing the j-th word.

• We can model each p(xj |y) via a Bernoulli distribution, which has only one parameter.

• Hence, it takes only d parameters (instead of 2d−1) to specify the entire distribution p(x|y) =∏d
j=1 p(xj | y).

8



19 Bernoulli Naive Bayes Model
We can apply the Naive Bayes assumption to obtain a model for when x is in a bag of words
representation.

The Bernoulli Naive Bayes model Pθ(x, y) is defined as follows: * The distribution over classes
is Categorical, denoted Categorical(ϕ1, ϕ2, ..., ϕK). Thus, Pθ(y = k) = ϕk. * The conditional
probability of the data under class k factorizes as Pθ(x|y = k) =

∏d
j=1 P (xj | y = k) (the Naive

Bayes assumption), where each Pθ(xj | y = k) is a Bernoullli(ψjk).

Formally, we have:
Pθ(y) = Categorical(ϕ1, ϕ2, . . . , ϕK)

Pθ(xj = 1|y = k) = Bernoullli(ψjk)

Pθ(x|y = k) =
d∏
j=1

Pθ(xj |y = k)

# Part 3: Naive Bayes: Learning

We are going to continue our discussion of Naive Bayes.

We will now turn our attention to learnig the parameters of the model and using them to make
predictions.

20 Review: Text Classification
An interesting instance of a classification problem is classifying text. * Includes a lot applied prob-
lems: spam filtering, fraud detection, medical record classification, etc. * Inputs x are sequences of
words of an arbitrary length. * The dimensionality of text inputs is usually very large, proportional
to the size of the vocabulary.

21 Review: Bag of Words Features
Given a vocabulary V , a bag of words representation of a document x is a function ϕ(x) → {0, 1}|V |

that outputs a feature vector

ϕ(x) =



0
1
0
...
0
...



church
doctor
fervently

purple

of dimension |V |. The j-th component ϕ(x)j equals 1 if x convains the j-th word in V and 0
otherwise.

22 Bernoulli Naive Bayes Model
The Bernoulli Naive Bayes model Pθ(x, y) is defined as follows: * The distribution over classes
is Categorical, denoted Categorical(ϕ1, ϕ2, ..., ϕK). Thus, Pθ(y = k) = ϕk. * The conditional

9

https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Categorical_distribution


probability of the data under class k factorizes as Pθ(x|y = k) =
∏d
j=1 P (xj | y = k) (the Naive

Bayes assumption), where each Pθ(xj | y = k) is a Bernoullli(ψjk).

23 Review: Maximum Likelihood Learning
In order to fit probabilistic models, we use the following objective:

max
θ

Ex,y∼Pdata logPθ(x, y).

This seeks to find a model that assigns high probability to the training data.

Let’s use maximum likelihood to fit the Bernoulli Naive Bayes model. Note that model parameterss
θ are the union of the parameters of each sub-model:

θ = (ϕ1, ϕ2, . . . , ϕK , ψ11, ψ21, . . . , ψdK).

24 Learning a Bernoulli Naive Bayes Model
Given a dataset D = {(x(i), y(i)) | i = 1, 2, . . . , n}, we want to optimize the log-likelihood ℓ(θ) =
logL(θ):

ℓ(θ) =
n∑
i=1

logPθ(x(i), y(i)) =
n∑
i=1

logPθ(x(i)|y(i)) +
n∑
i=1

logPθ(y(i))

=
K∑
k=1

d∑
j=1

∑
i:y(i)=k

logP (x(i)j |y(i);ψjk)︸ ︷︷ ︸
all the terms that involve ψjk

+
n∑
i=1

logP (y(i); ϕ⃗)︸ ︷︷ ︸
all the terms that involve ϕ⃗

.

Notice that each parameter ψjk is found in only one subset of terms and the ϕk are also in the same
set of terms.

As in Gaussian Discriminant Analysis, the log-likelihood decomposes into a sum of terms. To
optimize for some ψjk, we only need to look at the set of terms that contain ψjk:

argmax
ψjk

ℓ(θ) = argmax
ψjk

∑
i:y(i)=k

log p(x(i)j |y(i);ψjk).

Similarly, optimizing for ϕ⃗ = (ϕ1, ϕ2, . . . , ϕK) only involves a single term:

max
ϕ⃗

n∑
i=1

logPθ(x(i), y(i); θ) = max
ϕ⃗

n∑
i=1

logPθ(y(i); ϕ⃗).

25 Optimizing the Model Parameters
These observations greatly simplify the optimization of the model. Let’s first consider the opti-
mization over ϕ⃗ = (ϕ1, ϕ2, . . . , ϕK).

10



As in Gaussian Discriminant Analysis, we can take a derivative over ϕk and set it to zero to obtain

ϕk =
nk
n

for each k, where nk = |{i : y(i) = k}| is the number of training targets with class k.

Thus, the optimal ϕk is just the proportion of data points with class k in the training set!

Similarly, we can maximize the likelihood for the other parameters to obtain closed form solutions:

ψjk =
njk
nk

.

where |{i : x(i)j = 1 and y(i) = k}| is the number of x(i) with label k and a positive occurrence of
word j.

Each ψjk is simply the proportion of documents in class k that contain the word j.

26 Querying the Model
How do we ask the model for predictions? As discussed earler, we can apply Bayes’ rule:

argmax
y

Pθ(y|x) = argmax
y

Pθ(x|y)P (y).

Thus, we can estimate the probability of x and under each Pθ(x|y = k)P (y = k) and choose the
class that explains the data best.

27 Classification Dataset: Twenty Newsgroups
To illustrate the text classification problem, we will use a popular dataset called 20-newsgroups. *
It contains ~20,000 documents collected approximately evenly from 20 different online newsgroups.
* Each newgroup covers a different topic such as medicine, computer graphics, or religion. * This
dataset is widely used to benchmark text classification and other types of algorithms.

Let’s load this dataset.

[10]: #https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.
↪→html

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_20newsgroups

# for this lecture, we will restrict our attention to just 4 different␣
↪→newsgroups:

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.
↪→med']

# load the dataset

11



twenty_train = fetch_20newsgroups(subset='train', categories=categories,␣
↪→shuffle=True, random_state=42)

# print some information on it
print(twenty_train.DESCR[:1100])

.. _20newsgroups_dataset:

The 20 newsgroups text dataset
------------------------------

The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.

This module contains two loaders. The first one,
:func:`sklearn.datasets.fetch_20newsgroups`,
returns a list of the raw texts that can be fed to text feature
extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`
with custom parameters so as to extract feature vectors.
The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.

**Data Set Characteristics:**

================= ==========
Classes 20
Samples total 18846
Dimensionality 1
Features text
================= ==========

Usage
~~~~~

28 Example: Text Classification
Let’s see how this approach can be used in practice on the text classification dataset. * We will
learn a good set of parameters for a Bernoulli Naive Bayes model * We will compare the outputs
to the true predictions.

Let’s see an example of this approach on 20-newsgroups.

12

We start by computing these features using the sklearn library.

[11]: from sklearn.feature_extraction.text import CountVectorizer

vectorize the training set
count_vect = CountVectorizer(binary=True, max_features=1000)
y_train = twenty_train.target
X_train = count_vect.fit_transform(twenty_train.data).toarray()
X_train.shape

[11]: (2257, 1000)

Let’s compute the maximum likelihood model parameters on our dataset.

[12]: # we can implement these formulas over the Iris dataset
n = X_train.shape[0] # size of the dataset
d = X_train.shape[1] # number of features in our dataset
K = 4 # number of clases

these are the shapes of the parameters
psis = np.zeros([K,d])
phis = np.zeros([K])

we now compute the parameters
for k in range(K):

X_k = X_train[y_train == k]
psis[k] = np.mean(X_k, axis=0)
phis[k] = X_k.shape[0] / float(n)

print out the class proportions
print(phis)

[0.21267169 0.25875055 0.26318121 0.26539654]

We can compute predictions using Bayes’ rule.

[13]: # we can implement this in numpy
def nb_predictions(x, psis, phis):

"""This returns class assignments and scores under the NB model.

We compute \arg\max_y p(y|x) as \arg\max_y p(x|y)p(y)
"""
adjust shapes
n, d = x.shape
x = np.reshape(x, (1, n, d))
psis = np.reshape(psis, (K, 1, d))

clip probabilities to avoid log(0)
psis = psis.clip(1e-14, 1-1e-14)

13

compute log-probabilities
logpy = np.log(phis).reshape([K,1])
logpxy = x * np.log(psis) + (1-x) * np.log(1-psis)
logpyx = logpxy.sum(axis=2) + logpy

return logpyx.argmax(axis=0).flatten(), logpyx.reshape([K,n])

idx, logpyx = nb_predictions(X_train, psis, phis)
print(idx[:10])

[1 1 3 0 3 3 3 2 2 2]

We can measure the accuracy on the training set:

[14]: (idx==y_train).mean()

[14]: 0.8692955250332299

[15]: docs_new = ['OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new).toarray()
predicted, logpyx_new = nb_predictions(X_new, psis, phis)

for doc, category in zip(docs_new, predicted):
print('%r => %s' % (doc, twenty_train.target_names[category]))

'OpenGL on the GPU is fast' => comp.graphics

29 Algorithm: Bernoulli Naive Bayes
• Type: Supervised learning (multi-class classification)
• Model family: Mixtures of Bernoulli distributions
• Objective function: Log-likelihood.
• Optimizer: Closed form solution.

Part 4: Discriminative vs. Generative Algorithms

We conclude our lectures on generative algorithms by revisting the question of how they compare
to discriminative algorithms.

30 Review: Generative Models
There are two types of probabilistic models: generative and discriminative.

Pθ(x, y) : X × Y → [0, 1]︸ ︷︷ ︸
generative model

Pθ(y|x) : X × Y → [0, 1]︸ ︷︷ ︸
discriminative model

14

Given a new datapoint x′, we can match it against each class model and find the class that looks
most similar to it:

argmax
y

log p(y|x) = argmax
y

log p(x|y)p(y)
p(x)

= argmax
y

log p(x|y)p(y),

where we have applied Bayes’ rule in the second equation.

31 Review: Gaussian Discriminant Model
The GDA algorithm defines the following model family. * The probability P (x | y = k) of the data
under class k is a multivariate Gaussian N (x;µk,Σk) with parameters µk,Σk. * The distribution
over classes is Categorical, denoted Categorical(ϕ1, ϕ2, ..., ϕK). Thus, Pθ(y = k) = ϕk.

Thus, Pθ(x, y) is a mixture of K Gaussians:

Pθ(x, y) =
K∑
k=1

Pθ(y = k)Pθ(x|y = k) =
K∑
k=1

ϕkN (x;µk,Σk)

32 Classification Dataset: Iris Flowers
To look at properties of generative algorithms, let’s look again at the Iris flower dataset.

It’s a classical dataset originally published by R. A. Fisher in 1936. Nowadays, it’s widely used for
demonstrating machine learning algorithms.

[16]: import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris(as_frame=True)

print part of the dataset
iris_X, iris_y = iris.data, iris.target
pd.concat([iris_X, iris_y], axis=1).head()

[16]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

target
0 0
1 0

15

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Ronald_Fisher

2 0
3 0
4 0

If we only consider the first two feature columns, we can visualize the dataset in 2D.

[17]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

%matplotlib inline
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

create 2d version of dataset
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y, edgecolor='k', s=60, cmap=plt.cm.
↪→Paired)

plt.xlabel('Sepal Length (cm)')
plt.ylabel('Sepal Width (cm)')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Versicolour',␣
↪→'Virginica'], loc='lower right')

[17]: <matplotlib.legend.Legend at 0x1259aee48>

33 Linear Discriminant Analysis
When the covariances Σk in GDA are equal, we have an algorithm called Linear Discriminant
Analysis or LDA.

Let’s try this algorithm on the Iris flower dataset.

16

We may compute the parameters of this model similarly to how we did for GDA.

[19]: # we can implement these formulas over the Iris dataset
d = 2 # number of features in our toy dataset
K = 3 # number of clases
n = X.shape[0] # size of the dataset

these are the shapes of the parameters
mus = np.zeros([K,d])
Sigmas = np.zeros([K,d,d])
phis = np.zeros([K])

we now compute the parameters
for k in range(3):

X_k = X[iris_y == k]
mus[k] = np.mean(X_k, axis=0)
Sigmas[k] = np.cov(X.T) # this is now X.T instead of X_k.T
phis[k] = X_k.shape[0] / float(n)

print out the means
print(mus)

[[5.006 3.428]
[5.936 2.77]
[6.588 2.974]]

We can compute predictions using Bayes’ rule.

[20]: # we can implement this in numpy
def gda_predictions(x, mus, Sigmas, phis):

"""This returns class assignments and p(y|x) under the GDA model.

We compute \arg\max_y p(y|x) as \arg\max_y p(x|y)p(y)
"""
adjust shapes
n, d = x.shape
x = np.reshape(x, (1, n, d, 1))
mus = np.reshape(mus, (K, 1, d, 1))
Sigmas = np.reshape(Sigmas, (K, 1, d, d))

compute probabilities
py = np.tile(phis.reshape((K,1)), (1,n)).reshape([K,n,1,1])
pxy = (

np.sqrt(np.abs((2*np.pi)**d*np.linalg.det(Sigmas))).reshape((K,1,1,1))
* -.5*np.exp(

np.matmul(np.matmul((x-mus).transpose([0,1,3,2]), np.linalg.
↪→inv(Sigmas)), x-mus)

)

17

)
pyx = pxy * py
return pyx.argmax(axis=0).flatten(), pyx.reshape([K,n])

idx, pyx = gda_predictions(X, mus, Sigmas, phis)
print(idx)

[0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 2 1 2 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1
2 2 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 1 2 2
1 2 1 1 2 2 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2
2 1]

We visualize predictions like we did earlier.

[22]: from matplotlib.colors import LogNorm
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z, pyx = gda_predictions(np.c_[xx.ravel(), yy.ravel()], mus, Sigmas, phis)
logpy = np.log(-1./3*pyx)

Put the result into a color plot
Z = Z.reshape(xx.shape)
contours = np.zeros([K, xx.shape[0], xx.shape[1]])
for k in range(K):

contours[k] = logpy[k].reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

18

Linear Discriminant Analysis outputs decision boundaries that are linear.

Softmax or Logistic regression also produce linear boundaries. In fact, both types of algorithms
make use of the same model class.

What is their difference then?

34 Generative vs. Discriminative Model Classes
In binary classification, we can also show that the conditional probability Pθ(y|x) of a Bernoulli
Naive Bayes or LDA model has the form

Pθ(y|x) =
Pθ(x|y)Pθ(y)∑

y′∈Y Pθ(x|y′)Pθ(y′)
=

1

1 + exp(−γ⊤x)

for some set of parameters γ (whose expression can be derived from θ), which is the same form as
Logistic Regression!

Does it mean that the two sets of algorithms are equivalent? No! They assume the same model
class M, they use a different objective J to select a model in M.

35 Generative Models vs. Logistic Regression
Given that both algorithms find linear boundaries, how should one choose between the two?

• Bernoulli Naive Bayes or LDA assumes a logistic form for p(y|x). But converse is not true:
logistic regression does not assume a NB or LDA model for p(x, y).

• Generative models make stronger modeling assumptions. If these assumptions hold true, the
generative models will perform better.

• But if they don’t, logistic regression will be more robust to outliers and model misspecification,
and achieve higher accuracy.

36 Other Features of Generative Models
Generative models can also do things that discriminative models can’t do. * Generation: we can
sample x ∼ p(x|y) to generate new data (images, audio). * Missing value imputation: if xj is
missing, we can infer it using p(x|y). * Outlier detection: given a new x′, we can try detecting via
p(x′) if x′ is invalid.

37 Discriminative Approaches
Discriminative algorithms are deservingly very popular. * Most state-of-the-art algorithms for
classification are discriminative * They are often more accurate because they make fewer modeling
assumptions.

19

38 Generative Approaches
But generative algorithms also have many advantages: * Can do more than just prediction: gen-
eration, fill-in missing features, etc. * Can include extra prior knowledge; if prior knowledge is
correct, model will be more accurate. * Often have closed-form solutions, hence are faster to train.

20

	Lecture 8: Naive Bayes
	Applied Machine Learning

	Part 1: Text Classification
	Review: Classification
	Text Classification
	Classification Dataset: Twenty Newsgroups
	Feature Representations for Text
	Bag of Words Representations
	Practical Considerations
	Classification Using BoW Features
	Summary of Text Classification
	Review: Classification
	Review: Text Classification
	Review: Bag of Words Features
	Review: Generative Models
	Review: Gaussian Discriminant Model
	Problem 1: Discrete Data
	Problem 2: High Dimensionality
	Naive Bayes Assumption
	Bernoulli Naive Bayes Model
	Review: Text Classification
	Review: Bag of Words Features
	Bernoulli Naive Bayes Model
	Review: Maximum Likelihood Learning
	Learning a Bernoulli Naive Bayes Model
	Optimizing the Model Parameters
	Querying the Model
	Classification Dataset: Twenty Newsgroups
	Example: Text Classification
	Algorithm: Bernoulli Naive Bayes
	Review: Generative Models
	Review: Gaussian Discriminant Model
	Classification Dataset: Iris Flowers
	Linear Discriminant Analysis
	Generative vs. Discriminative Model Classes
	Generative Models vs. Logistic Regression
	Other Features of Generative Models
	Discriminative Approaches
	Generative Approaches

