
lecture6-classification

March 11, 2022

1 Lecture 6: Classification Algorithms
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Classification
So far, every supervised learning algorithm that we’ve seen has been an instance of regression.

Next, let’s look at some classification algorithms. First, we will define what classification is.

3 Review: Components of A Supervised Machine Learning Prob-
lem

At a high level, a supervised machine learning problem has the following structure:

Training Dataset︸ ︷︷ ︸
Attributes + Features

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Predictive Model

4 Regression vs. Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.

2. Classification: The target variable y is discrete and takes on one of K possible values:
Y = {y1, y2, . . . yK}. Each discrete value corresponds to a class that we want to predict.

5 Binary Classification
An important special case of classification is when the number of classes K = 2.

In this case, we have an instance of a binary classification problem.

1



6 Classification Dataset: Iris Flowers
To demonstrate classification algorithms, we are going to use the Iris flower dataset.

It’s a classical dataset originally published by R. A. Fisher in 1936. Nowadays, it’s widely used for
demonstrating machine learning algorithms.

[1]: import numpy as np
import pandas as pd
from sklearn import datasets
import warnings
warnings.filterwarnings('ignore')

# Load the Iris dataset
iris = datasets.load_iris(as_frame=True)

print(iris.DESCR)

.. _iris_dataset:

Iris plants dataset
--------------------

**Data Set Characteristics:**

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:

- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None

2

https://en.wikipedia.org/wiki/Ronald_Fisher


:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. topic:: References

- Fisher, R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).

- Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.

- Many, many more …

[2]: # print part of the dataset
iris_X, iris_y = iris.data, iris.target
pd.concat([iris_X, iris_y], axis=1).head()

[2]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

target
0 0
1 0

3



2 0
3 0
4 0

Here is a visualization of this dataset in 3D. Note that we are using the first 3 features (out of 4)
in this dateset.

[3]: # Code from: https://scikit-learn.org/stable/auto_examples/datasets/
↪→plot_iris_dataset.html

%matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA

# let's visualize this dataset

fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
# X_reduced = PCA(n_components=3).fit_transform(iris_X)
X_reduced = iris_X.to_numpy()[:,:3]
ax.set_title("3D Projection of the Iris Dataset")
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.set_xlabel("Sepal length")
ax.set_ylabel("Sepal width")
ax.set_zlabel("Petal length")
ax.w_zaxis.set_ticklabels([])
p1 = ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=iris_y,

cmap=plt.cm.Set1, edgecolor='k', s=40)
plt.legend(handles=p1.legend_elements()[0], labels=['Iris Setosa', 'Iris␣
↪→Versicolour', 'Iris Virginica'])

[3]: <matplotlib.legend.Legend at 0x129076cc0>

4



7 Understanding Classification
How is clasification different from regression? * In regression, we try to fit a curve through the set
of targets y(i).

• In classification, classes define a partition of the feature space, and our goal is to find the
boundaries that separate these regions.

• Outputs of classification models have a simple probabilistic interpretation: they are proba-
bilities that a data point belongs to a given class.

Let’s visualize our Iris dataset to see this. Note that we are using the first 2 features in this dateset.

5



[4]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

# Plot also the training points
p1 = plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y,

edgecolor='k', s=50, cmap=plt.cm.Paired)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Versicolour',␣
↪→'Virginica'], loc='lower right')

[4]: <matplotlib.legend.Legend at 0x1292f7a20>

Let’s train a classification algorithm on this data.

Below, we see the regions predicted to be associated with the blue and non-blue classes and the
line between them in the decision boundary.

[5]: from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e5)

# Create an instance of Logistic Regression Classifier and fit the data.
X = iris_X.to_numpy()[:,:2]
# rename class two to class one
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
Y = iris_y2
logreg.fit(X, Y)

xx, yy = np.meshgrid(np.arange(4, 8.2, .02), np.arange(1.8, 4.5, .02))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot

6



Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired, s=50)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

# Part 2: Nearest Neighbors

Previously, we have seen what defines a classification problem. Let’s now look at our first classifi-
cation algorithm.

8 Review: Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Classification: The target variable y is discrete and takes on one of K possible values:

Y = {y1, y2, . . . yK}. Each discrete value corresponds to a class that we want to predict.

9 A Simple Classification Algorithm: Nearest Neighbors
Suppose we are given a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}. At inference
time, we receive a query point x′ and we want to predict its label y′.

A really simple but suprisingly effective way of returning y′ is the nearest neighbors approach. *
Given a query datapoint x′, find the training example (x, y) in D that’s closest to x′, in the sense
that x is “nearest” to x′ * Return y, the label of the “nearest neighbor” x.

7



In the example below on the Iris dataset, the red cross denotes the query x′. The closest class to
it is “Virginica”. (We’re only using the first two features in the dataset for simplicity.)

[6]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

# Plot also the training points
p1 = plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y,

edgecolor='k', s=50, cmap=plt.cm.Paired)
p2 = plt.plot([7.5], [4], 'rx', ms=10, mew=5)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend(['Query Point', 'Training Data'], loc='lower right')
plt.legend(handles=p1.legend_elements()[0]+p2, labels=['Setosa', 'Versicolour',␣
↪→'Virginica', 'Query'], loc='lower right')

[6]: <matplotlib.legend.Legend at 0x12982b4e0>

10 Choosing a Distance Function
How do we select the point x that is the closest to the query point x′? There are many options:

• The Euclidean distance ||x− x′||2 =
√∑d

j=1 |xj − x′j |2) is a popular choice.

• The Minkowski distance ||x− x′||p = (
∑d

j=1 |xj − x′j |p)1/p generalizes the Euclidean, L1 and
other distances.

• The Mahalanobis distance
√
x⊤V x for a positive semidefinite matrix V ∈ Rd×d also generalizes

the Euclidean distnace.

• Discrete-valued inputs can be examined via the Hamming distance |{j : xj ̸= x′j}| and other
distances.

Let’s apply Nearest Neighbors to the above dataset using the Euclidean distance (or equiavalently,
Minkowski with p = 2)

8



[23]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

from sklearn import neighbors
from matplotlib.colors import ListedColormap

# Train a Nearest Neighbors Model
clf = neighbors.KNeighborsClassifier(n_neighbors=1, metric='minkowski', p=2)
clf.fit(iris_X.iloc[:,:2], iris_y)

# Create color maps
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = iris_X.iloc[:, 0].min() - 1, iris_X.iloc[:, 0].max() + 1
y_min, y_max = iris_X.iloc[:, 1].min() - 1, iris_X.iloc[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),

np.arange(y_min, y_max, 0.02))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y, cmap=cmap_bold,

edgecolor='k', s=60)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())

plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')

[23]: Text(0, 0.5, 'Sepal Width')

9



In the above example, the regions of the 2D space that are assigned to each class are highly
irregular. In areas where the two classes overlap, the decision of the boundary flips between the
classes, depending on which point is closest to it.

11 K-Nearest Neighbors
Intuitively, we expect the true decision boundary to be smooth. Therefore, we average K nearest
neighbors at a query point.

• Given a query datapoint x′, find the K training examples N =
{(x(1), y(1)), (x(2), y(2)), . . . , (x(K), y(K))} ⊆ D that are closest to x′.

• Return yN , the consensus label of the neighborhood N .

The consesus yN can be determined by voting, weighted average, etc.

Let’s look at Nearest Neighbors with a neighborhood of 30. The decision boundary is much
smoother than before.

[8]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

# Train a Nearest Neighbors Model
clf = neighbors.KNeighborsClassifier(n_neighbors=30, metric='minkowski', p=2)
clf.fit(iris_X.iloc[:,:2], iris_y)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y, cmap=cmap_bold,

edgecolor='k', s=60)
plt.xlim(xx.min(), xx.max())

10



plt.ylim(yy.min(), yy.max())

plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')

[8]: Text(0, 0.5, 'Sepal Width')

12 Review: Data Distribution
We will assume that the dataset is governed by a probability distribution P, which we will call the
data distribution. We will denote this as

x, y ∼ P.

The training set D = {(x(i), y(i)) | i = 1, 2, ..., n} consists of independent and identicaly distributed
(IID) samples from P.

13 KNN Estimates Data Distribution
Suppose that the output y′ of KNN is the average target in the neighborhood N (x′) around the
query x′. Observe that we can write:

y′ =
1

K

∑
(x,y)∈N (x′)

y ≈ E[y | x′].

• When x ≈ x′ and when P is reasonably smooth, each y for (x, y) ∈ N (x′) is approximately a
sample from P(y | x′) (since P doesn’t change much around x′, P(y | x′) ≈ P(y | x)).

• Thus y′ is essentially a Monte Carlo estimate of E[y | x′] (the average of K samples from
P(y | x′)).

11



14 Algorithm: K-Nearest Neighbors
• Type: Supervised learning (regression and classification)
• Model family: Consensus over K training instances.
• Objective function: Euclidean, Minkowski, Hamming, etc.
• Optimizer: Non at training. Nearest neighbor search at inference using specialized search

algorithms (Hashing, KD-trees).
• Probabilistic interpretation: Directly approximating the density Pdata(y|x).

15 Pros and Cons of KNN
Pros: * Can approximate any data distribution arbtrarily well.

Cons: * Need to store entire dataset to make queries, which is computationally prohibitive. *
Number of data needed scale exponentially with dimension (“curse of dimensionality”).

# Part 3: Non-Parametric Models

Nearest neighbors is the first example of an important type of machine learning algorithm called a
non-parametric model.

16 Review: Supervised Learning Model
We’ll say that a model is a function

f : X → Y

that maps inputs x ∈ X to targets y ∈ Y .

Often, models have parameters θ ∈ Θ living in a set Θ. We will then write the model as

fθ : X → Y

to denote that it’s parametrized by θ.

17 Review: K-Nearest Neighbors
Suppose we are given a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}. At inference
time, we receive a query point x′ and we want to predict its label y′.

• Given a query datapoint x′, find the K training examples N =
{(x(1), y(1)), (x(2), y(2)), . . . , (x(K), y(K))} ⊆ D that are closest to x′.

• Return yN , the consensus label of the neighborhood N .

The consesus yN can be determined by voting, weighted average, etc.

18 Non-Parametric Models
Nearest neighbors is an example of a non-parametric model. Parametric vs. non-parametric are is
a key distinguishing characteristic for machine learning models.

12



A parametric model fθ(x) : X × Θ → Y is defined by a finite set of parameters θ ∈ Θ whose
dimensionality is constant with respect to the dataset. Linear models of the form

fθ(x) = θ⊤x

are an example of a parametric model.

In a non-parametric model, the function f uses the entire training dataset (or a post-proccessed
version of it) to make predictions, as in K-Nearest Neighbors. In other words, the complexity of
the model increases with dataset size.

Non-parametric models have the advantage of not loosing any information at training time. How-
ever, they are also computationally less tractable and may easily overfit the training set.

19 Algorithm: K-Nearest Neighbors
• Type: Supervised learning (regression and classification)
• Model family: Non-parametric: Consensus over K training instances.
• Objective function: Euclidean, Minkowski, Hamming, etc.
• Optimizer: None at training. Nearest neighbor search at inference using specialized search

algorithms (Hashing, KD-trees).
• Probabilistic interpretation: Directly approximating the density Pdata(y|x).

20 Part 4: Logistic Regression
Next, we are going to see a simple parametric classification algorithm that addresses many of these
limitations of Nearest Neighbors.

21 Review: Classification
Consider a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We distinguish between two types of supervised learning problems depnding on the targets y(i).

1. Regression: The target variable y ∈ Y is continuous: Y ⊆ R.
2. Classification: The target variable y is discrete and takes on one of K possible values:

Y = {y1, y2, . . . yK}. Each discrete value corresponds to a class that we want to predict.

22 Binary Classification and the Iris Dataset
We are going to start by looking at binary (two-class) classification.

To keep things simple, we will use the Iris dataset. We will be predicting the difference between
class 0 (Iris Setosa) and the other two classes.

[9]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

# rename class two to class one
iris_y2 = iris_y.copy()

13



iris_y2[iris_y2==2] = 1

# Plot also the training points
p1 = plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y2,

edgecolor='k', s=60, cmap=plt.cm.Paired)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Non-Setosa'],␣
↪→loc='lower right')

[9]: <matplotlib.legend.Legend at 0x10ac3f278>

23 Review: Least Squares
Recall that the linear regression algorithm fits a linear model of the form

f(x) =

d∑
j=0

θj · xj = θ⊤x.

It minimizes the mean squared error (MSE)

J(θ) =
1

2n

n∑
i=1

(y(i) − θ⊤x(i))2

on a dataset {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

We could also use the above model for classification problem for which Y = {0, 1}.

[10]: # https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.
↪→html

import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LinearRegression

14



logreg = LinearRegression()

# Create an instance of Logistic Regression Classifier and fit the data.
X = iris_X.to_numpy()[:,:2]
Y = iris_y2
logreg.fit(X, Y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
Z[Z>0.5] = 1
Z[Z<0.5] = 0

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired, s=60)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

Least squares returns an acceptable decision boundary on this dataset. However, it is problematic
for a few reasons. * There is nothing to prevent outputs larger than one or smaller than zero, which
is conceptually wrong * We also don’t have optimal performance: at least one point is misclassified,
and others are too close to the decision boundary.

15



24 The Logistic Function
To address this problem, we will look at a different hypothesis class. We will choose models of the
form:

f(x) = σ(θ⊤x) =
1

1 + exp(−θ⊤x)
,

where
σ(z) =

1

1 + exp(−z)

is known as the sigmoid or logistic function.

The logistic function σ : R → [0, 1] “squeezes” points from the real line into [0, 1].

[11]: import numpy as np
from matplotlib import pyplot as plt

def sigmoid(z):
return 1/(1+np.exp(-z))

z = np.linspace(-5, 5)
plt.plot(z, sigmoid(z))

[11]: [<matplotlib.lines.Line2D at 0x12c456cc0>]

25 The Logistic Function: Properties
The sigmoid function is defined as

σ(z) =
1

1 + exp(−z)
.

A few observations:

• The tends to 1 as z → ∞ and tends to 0 as z → −∞.

16



• Thus, models of the form σ(θ⊤x) output values between 0 and 1, which is suitable for binary
classification.

• It is easy to show that the derivative of σ(z) has a simple form: dσ
dz = σ(z)(1− σ(z)).

Let’s implement our model using the sigmoid function.

[12]: def f(X, theta):
"""The sigmoid model we are trying to fit.

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional data matrix

Returns:
y_pred (np.array): n-dimensional vector of predicted targets
"""
return sigmoid(X.dot(theta))

26 Review: Probabilistic Least Squares
Recall that least squares can be interpreted as fitting a Gaussian probabilistic model

p(y|x; θ) = 1√
2πσ

exp
(
−(y − θ⊤x)2

2σ2

)
.

The log-likelihood of this model at a point (x, y) equals

logL(θ) = log p(y|x; θ) = const1 · (y − θ⊤x)2 + const2

for some constants const1, const2.

Least squares thus amounts to fitting a Gaussian N (y;µ(x), σ) with a standard deviation σ of one
and a mean of µ(x) = θ⊤x.

27 A Probabilistic Approach to Classification
We can take this probabilistic perspective to derive a new algorithm for binary classification.

We will start by using our logistic model to parametrize a probability distribution as follows:

p(y = 1|x; θ) = σ(θ⊤x)

p(y = 0|x; θ) = 1− σ(θ⊤x).

A probability over y ∈ {0, 1} of the form P (y = 1) = p is called Bernoulli.

Note that we can write this more compactly as

p(y|x; θ) = σ(θ⊤x)y · (1− σ(θ⊤x))1−y

17



28 Review: Conditional Maximum Likelihood
A general approach of optimizing conditional models of the form Pθ(y|x) is by minimizing expected
KL divergence with respect to the data distribution:

min
θ

Ex∼Pdata [D(Pdata(y|x) || Pθ(y|x))] .

With a bit of math, we can show that the maximum likelihood objective becomes

max
θ

Ex,y∼Pdata logPθ(y|x).

This is the principle of conditional maximum likelihood.

29 Applying Maximum Lilkelihood
Following the principle of maximum likelihood, we want to optimize the following objective defined
over a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

L(θ) =
n∏

i=1

p(y(i) | x(i); θ)

=

n∏
i=1

σ(θ⊤x(i))y
(i) · (1− σ(θ⊤x(i)))1−y(i) .

This log of this objective is also often called the log-loss, or cross-entropy.

This model and objective function define logistic regression, one of the most widely used classifica-
tion algorithms (the name “regression” is an unfortunate misnomer!).

Let’s implement the likelihood objective.

[13]: def log_likelihood(theta, X, y):
"""The cost function, J(theta0, theta1) describing the goodness of fit.

We added the 1e-6 term in order to avoid overflow (inf and -inf).

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets
"""
return (y*np.log(f(X, theta) + 1e-6) + (1-y)*np.log(1-f(X, theta) + 1e-6)).

↪→mean()

30 Review: Gradient Descent
If we want to optimize J(θ), we start with an initial guess θ0 for the parameters and repeat the
following update:

θi := θi−1 − α · ∇θJ(θi−1).

18



As code, this method may look as follows:

theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:

theta_prev = theta
theta = theta_prev - step_size * gradient(theta_prev)

31 Derivatives of the Log-Likelihood
Let’s work out the gradient for our log likelihood objective:

∂ logL(θ)
∂θj

=
∂

∂θj
log

(
σ(θ⊤x) · (1− σ(θ⊤x))1−y

)
=

(
y · 1

σ(θ⊤x)
− (1− y)

1

1− σ(θ⊤x)

)
∂

∂θj
σ(θ⊤x)

=

(
y · 1

σ(θ⊤x)
− (1− y)

1

1− σ(θ⊤x)

)
σ(θ⊤x)(1− σ(θ⊤x))

∂

∂θj
θ⊤x

=
(
y · (1− σ(θ⊤x))− (1− y)σ(θ⊤x)

)
xj

= (y − fθ(x))xj .

32 Gradient of the Log-Likelihood
Using the above expression, we obtain the following gradient:

∇θJ(θ) = (y − fθ(x)) · x.

* This expression looks very similar to the gradient of the mean squared error. * However, it is
different, because the model fθ is different.

Let’s implement the gradient.

[14]: def loglik_gradient(theta, X, y):
"""The cost function, J(theta0, theta1) describing the goodness of fit.

Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets

Returns:
grad (np.array): d-dimensional gradient of the MSE
"""
return np.mean((y - f(X, theta)) * X.T, axis=1)

19



33 Gradient Descent for Logistic Regression
Putting this together, we obtain a complete learning algorithm, logistic regression.

theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:

theta_prev = theta
theta = theta_prev - step_size * (f(x, theta)-y) * x

Let’s implement this algorithm.

[15]: threshold = 5e-5
step_size = 1e-1

theta, theta_prev = np.zeros((3,)), np.ones((3,))
opt_pts = [theta]
opt_grads = []
iter = 0
iris_X['one'] = 1
X_train = iris_X.iloc[:,[0,1,-1]].to_numpy()
y_train = iris_y2.to_numpy()

while np.linalg.norm(theta - theta_prev) > threshold:
# while True:

if iter % 50000 == 0:
print('Iteration %d. Log-likelihood: %.6f' % (iter,␣

↪→log_likelihood(theta, X_train, y_train)))
theta_prev = theta
gradient = loglik_gradient(theta, X_train, y_train)
theta = theta_prev + step_size * gradient
opt_pts += [theta]
opt_grads += [gradient]
iter += 1

Iteration 0. Log-likelihood: -0.693145
Iteration 50000. Log-likelihood: -0.021506
Iteration 100000. Log-likelihood: -0.015329
Iteration 150000. Log-likelihood: -0.012062
Iteration 200000. Log-likelihood: -0.010076

Let’s now visualize the result.

[16]: xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = f(np.c_[xx.ravel(), yy.ravel(), np.ones(xx.ravel().shape)], theta)
Z[Z<0.5] = 0
Z[Z>=0.5] = 1

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

20



# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

This is how we would use the algorithm via sklearn.

[17]: from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e5, fit_intercept=True)

# Create an instance of Logistic Regression Classifier and fit the data.
X = iris_X.to_numpy()[:,:2]
Y = iris_y2
logreg.fit(X, Y)

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, .02))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

21



34 Observations About Logistic Regression
• Logistic regression finds a linear decision boundary, is the set of points for which P (y = 1|x) =

P (y = 0|x), or equivalently:

0 = log P (y = 1|x)
P (y = 0|x)

= log
1

1+exp(−θ⊤x)

1− 1
1+exp(−θ⊤x)

= θ⊤x

The claim holds because 0 = θ⊤x is a linear function.

• Unlike least squares, we don’t have a closed form solution for θ, but we can still apply gradient
descent.

35 Algorithm: Logistic Regression
• Type: Supervised learning (binary classification)
• Model family: Linear decision boundaries.
• Objective function: Cross-entropy, a special case of log-likelihood.
• Optimizer: Gradient descent.
• Probabilistic interpretation: Parametrized Bernoulli distribution.

36 Part 5: Multi-Class Classification
Finally, let’s look at an extension of logistic regression to an arbitrary number of classes.

37 Review: Logistic Regression
Logistic regression fits models of the form:

f(x) = σ(θ⊤x) =
1

1 + exp(−θ⊤x)
,

22



where
σ(z) =

1

1 + exp(−z)

is known as the sigmoid or logistic function.

38 Multi-Class Classification
Linear regression only applies to binary classification problems. What if we have an arbitrary
number of classes K?

• The simplest approach that can be used with any machine learning algorithm is the “one
vs. all” approach. We train one classifer for each class to distinguish one class from all the
others.

• This works, but loses a valid probabilistic interpretation and is not very elegant.

• Alternatively, we may fit a probabilistic model that outputs multi-class probabilities.

Let’s load a fully multiclass version of the Iris dataset.

[18]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.
↪→html

# Plot also the training points
p1 = plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y,

edgecolor='k', s=60, cmap=plt.cm.Paired)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Versicolour',␣
↪→'Virginica'], loc='lower right')

[18]: <matplotlib.legend.Legend at 0x12fbd4f60>

23



39 The Softmax Function
The logistic function σ : R → [0, 1] be seen as mapping input an input z⃗ ∈ R to a probability.

Its multi-class extension σ⃗ : RK → [0, 1]K : maps a K-dimensional input z ∈ R to a K-dimensional
vector of probabilities.

Each componnent of σ⃗(z⃗) is defined as

σ(z⃗)k =
exp(zk)∑K
l=1 exp(zl)

.

We call this the softmax function.

When K = 2, this looks as follows:

σ(z⃗)1 =
exp(z1)

exp(z1) + exp(z2)
.

We can assume that exp(z1) = 1 because multiplying the numerator and denominator doesn’t
change any of the probabilities (so we can just divide by exp(z1)). Thus we obtain:

σ(z⃗)1 =
1

1 + exp(z2)
.

This is essentially our sigmoid function. Hence softmax generalizes the sigmoid function.

40 The Softmax Model
We can use the softmax function to define a K-class classification model.

In the binary classification setting, we mapped weights θ and features x into a probability as follows:

σ(θ⊤x) =
1

1 + exp(−θ⊤x)
,

In the multi-class setting, we define a model f : X → [0, 1]K that outputs the probability of class
k based on the features x and class-specific weights θk:

σ(θ⊤k x)k =
exp(θ⊤k x)∑K
l=1 exp(θ⊤l x)

.

Its parameter space lies in ΘK , where Θ = Rd is the parameter space of logistic regression.

You may have noticed that this model is slightly over-parametrized: multiplying every θk by a
constant results in an equivalent model. For this reason, it is often assumed that one of the class
weights θl = 0.

24



41 Softmax Regression
We again take a probabilistic perspective to derive a K-class classification algorithm based on this
model.

We will start by using our softmax model to parametrize a probability distribution as follows:

p(y = k|x; θ) = σ⃗(θ⊤x)k

This is called a categorial distribution, and it generalizes the Bernoulli.

Following the principle of maximum likelihood, we want to optimize the following objective defined
over a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

L(θ) =

n∏
i=1

p(y(i) | x(i); θ) =
n∏

i=1

σ⃗(θ⊤x(i))y(i)

This model and objective function define softmax regression. (The term “regression” here is again
a misnomer.)

Let’s now apply softmax regression to the Iris dataset by using the implementation from sklearn.

[19]: # https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.
↪→html

from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(C=1e5, multi_class='multinomial')

# Create an instance of Softmax and fit the data.
logreg.fit(X, iris_y)
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()

25



42 Algorithm: Softmax Regression
• Type: Supervised learning (classification)
• Model family: Linear decision boundaries.
• Objective function: Softmax loss, a special case of log-likelihood.
• Optimizer: Gradient descent.
• Probabilistic interpretation: Parametrized categorical distribution.

26


	Lecture 6: Classification Algorithms
	Applied Machine Learning

	Part 1: Classification
	Review: Components of A Supervised Machine Learning Problem
	Regression vs. Classification
	Binary Classification
	Classification Dataset: Iris Flowers
	Understanding Classification
	Review: Classification
	A Simple Classification Algorithm: Nearest Neighbors
	Choosing a Distance Function
	K-Nearest Neighbors
	Review: Data Distribution
	KNN Estimates Data Distribution
	Algorithm: K-Nearest Neighbors
	Pros and Cons of KNN
	Review: Supervised Learning Model
	Review: K-Nearest Neighbors
	Non-Parametric Models
	Algorithm: K-Nearest Neighbors
	Part 4: Logistic Regression
	Review: Classification
	Binary Classification and the Iris Dataset
	Review: Least Squares
	The Logistic Function
	The Logistic Function: Properties
	Review: Probabilistic Least Squares
	A Probabilistic Approach to Classification
	Review: Conditional Maximum Likelihood
	Applying Maximum Lilkelihood
	Review: Gradient Descent
	Derivatives of the Log-Likelihood
	Gradient of the Log-Likelihood
	Gradient Descent for Logistic Regression
	Observations About Logistic Regression
	Algorithm: Logistic Regression
	Part 5: Multi-Class Classification
	Review: Logistic Regression
	Multi-Class Classification
	The Softmax Function
	The Softmax Model
	Softmax Regression
	Algorithm: Softmax Regression

