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2 Part 1: Probabilistic Linear Regression
Previously, we derived maximum likelihood learning as a general way of learning machine models.

We will now seehow the algorithms we’ve seen so far are special cases of this principle.

3 Review: Probabilistic Models
A probabilistic model is a probability distribution

P (x, y) : X × Y → [0, 1].

This model can approximate the data distribution Pdata(x, y).

If we know P (x, y), we can use the conditional P (y|x) for prediction.

Probabilistic models may also have parameters θ ∈ Θ, which we denote as

Pθ(x, y) : X × Y → [0, 1].

4 Review: Conditional Maximum Likelihood
A general approach of optimizing conditional models of the form Pθ(y|x) is by minimizing expected
KL divergence with respect to the data distribution:

min
θ

Ex∼Pdata [D(Pdata(y|x) || Pθ(y|x))] .

With a bit of math, we can show that the maximum likelihood objective becomes

max
θ

Ex,y∼Pdata logPθ(y|x).

This is the principle of conditional maximum likelihood.
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5 Review: Least Squares
Recall that the linear regression algorithm fits a linear model of the form

f(x) =

d∑
j=0

θj · xj = θ⊤x.

It minimizes the mean squared error (MSE)

J(θ) =
1

2n

n∑
i=1

(y(i) − θ⊤x(i))2

on a dataset {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}.

Is there a specific reason for us to be optimizing the mean squared error to fit our linear model?

The answer to this can be found by looking at the algorithm from a probabilistic perspective.

6 Probabilistic Least Squares
Let’s derive a probabilistic algorithm by defining a class of probabilistic models and use maximum
likelihood as our objective.

1. Let’s choose our model family M to be the set of Gaussian distributions of the form

p(y|x; θ) = 1√
2πσ

exp
(
−(y − θ⊤x)2

2σ2

)
.

Each model N (y;µ(x), σ) is a Gaussian with a standard deviation σ of one and a mean of
µ(x) = θ⊤x that is parametrized by the parameters θ.

2. We optimize the model using maximum likelihood. The log-likelihood function at a point
(x, y) equals

logL(θ) = log p(y|x; θ) = log 1√
2πσ

exp
(
−(y − θ⊤x)2

2σ2

)
= −(y − θ⊤x)2

2σ2
+ const.

Note how this is a mean squared error (MSE) objective!

Thus, minimizing MSE is equivalent to maximizing the log-likelihood of a Normal distribution
N (y;µ(x), σ).

7 Algorithm: Gaussian Ordinary Least Squares
• Type: Supervised learning (regression)
• Model family: Linear models
• Objective function: Mean squared error
• Optimizer: Normal equations
• Probabilistic interpretation: Conditional Gaussian fit using max-likelihood.
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8 Extensions of Gaussian Least Squares
This is an example of how we can interpret a machine learning algorithm in a probabilistic frame-
work.

We will see many algorithms that have these kinds of interpretations. Here are some simple exten-
sions.

We can use a Gaussian model and also parametrize the standard deviation. * This is called
heteroscedastic regression, and allows us to obtain confidence intevals for our predictions.

We can can also parametrize other distributions, not just the Gaussian. * Exponential or Gamma
distributions for continuous variables * Bernoulli distribution for discrete variables

This yields many new machine learning algorithms.

# Part 2: Bayesian Algorithms

We can also use what we learned about Bayesian ML do interpret several algrothims that we’ve
seen as special cases of the Bayesian framework.

9 Review: The Bayesian Approach
In Bayesian statistics, θ is a random variable whose value happens to be unknown.

We formulate two models: * A likelihood model P (x, y|θ) that defines the probability of x, y for
any fixed value of θ. * A prior P (θ) that specifies us existing belief about the distribution of the
random variable θ.

Together, these two models define the joint distribution

P (x, y, θ) = P (x, y | θ)P (θ)

in which both the x, y and the parameters θ are random variables.

10 Review: A Posteriori Learning
Recall that in maximum a posteriori (MAP) learning, we optimize the following objective.

θMAP = argmax
θ

(
log

n∏
i=1

P (x(i), y(i) | θ) + logP (θ)

)
,

Note that we used the same formula as we used for maximum likelihood, except that we have added
the prior term logP (θ).

11 Review: Ridge Regression
Recall that the ridge regression algorithm fits a linear model

f(x) =

d∑
j=0

θj · xj = θ⊤x.
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We minimize the L2-regualrized mean squared error (MSE)

J(θ) =
1

2n

n∑
i=1

(y(i) − θ⊤x(i))2 +
λ

2

d∑
j=1

θ2j

on a dataset {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}. The term 1
2

∑d
j=1 θ

2
j = 1

2 ||θ||
2
2 is called the

regularizer.

12 Probabilistic Ridge Regession
We can interpet ridge regression as maximum apriori (MAP) estimation as follows.

1. First, we select our model family M to be the set of Gaussian distributions of the form (let’s
assume x ∈ R for simplicity).

p(y|x; θ) = 1√
2πσ

exp
(
−(y − θ⊤x)2

2σ2

)
.

2. We assume a Gaussian prior with mean zero and variance τ on the parameters θ:

p(θ) =
d∏

j=1

1√
2πτ

exp
(
−

θ2j
2τ2

)
.

3. We optimize the model using the MAP approach. The objective at a point (x, y) equals

logL(θ) = log p(y|x; θ) + log p(θ)

= log 1√
2πσ

exp
(
−(y − θ⊤x)2

2σ2

)
+ log

d∏
j=1

1√
2πτ

exp
(
−

θ2j
2τ2

)

= −(y − θ⊤x)2

2σ2
− 1

2τ2

d∑
j=1

θ2j + const.

Thus, we see that ridge regression actually amounts to performing MAP estimation with a Gaussian
prior. The strength of the regularizer λ equals 1/τ2.

13 Algorithm: Probabilistic Ridge Least Squares
• Type: Supervised learning (regression)
• Model family: Linear models
• Objective function: L2-regularized mean squared error
• Optimizer: Normal equations
• Probabilistic interpretation: Conditional Gaussian likelihood and Gaussian prior fit using

MAP.
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14 Bayesian View on ML Algorithms
Very often, we can interpret classical ML algorithms as applications of the probabilistic or Bayesian
approaches (although we can derive them in other ways as well!)

• Regularization can often be seen as applying a prior on the weights.

• L1 regularization can be seen as applying a Laplace prior.

• Many other algorithms will have similar interpretations.

# Part 3: Bayesian Ridge Regression

Let’s now look at an example of a fully Bayesian machinne learning algorithm.

This section is still under construction and not part of the main lecture.

15 Review: The Bayesian Approach
In Bayesian statistics, θ is a random variable whose value happens to be unknown.

We formulate two models: * A likelihood model P (x, y|θ) that defines the probability of x, y for
any fixed value of θ. * A prior P (θ) that specifies us existing belief about the distribution of the
random variable θ.

Together, these two models define the joint distribution

P (x, y, θ) = P (x, y | θ)P (θ)

in which both the x, y and the parameters θ are random variables.

16 Review: Ridge Regression
Recall that the ridge regression algorithm fits a linear model

f(x) =
d∑

j=0

θj · xj = θ⊤x.

We minimize the L2-regualrized mean squared error (MSE)

J(θ) =
1

2n

n∑
i=1

(yi − x⊤i θ)
2 +

1

2

d∑
j=1

θ2j

on a dataset {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}. The term 1
2

∑d
j=1 θ

2
j = 1

2 ||θ||
2
2 is called the

regularizer.

17 Probabilistic Ridge Regession
We can interpet ridge regression as maximum apriori (MAP) estimation as follows.
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18 Bayesian Predictions
Suppose we now want to predict the value of y from x. Unlike in the frequentist setting, we no
longer have a single estimate θ of the model params, but instead we have a distribution.

The Bayesian approach to predicting y given an input x and a training dataset D consists of taking
the prediction of all the possible models

P (y|x,D) =

∫
θ
P (y | x, θ)P (θ | D)dθ.

This is called the posterior predictive distribution. Note how each P (y | x, θ) is weighted by the
probability of θ given D.
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