
lecture22-evaluation-tools

March 11, 2022

1 Lecture 22: Tools for Diagnosing Model Performance
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Practical Considerations When Applying Machine Learning
Suppose you trained an image classifier with 80% accuracy. What’s next?

• Add more data?
• Train the algorithm for longer?
• Use a bigger model?
• Add regularization?
• Add new features?

We will next learn how to prioritize these decisions when applying ML.

3 Part 1: Learning Curves
Learning curves are a common and useful tool for performing bias/variance analysis in a deeper
way.

This section is mostly based on materials from an e-book by Andrew Ng.

4 Review: Overfitting (Variance)
Overfitting is one of the most common failure modes of machine learning. * A very expressive
model (a high degree polynomial) fits the training dataset perfectly. * The model also makes
wildly incorrect prediction outside this dataset, and doesn’t generalize.

Models that overfit are said to be high variance.

5 Review: Underfitting (Bias)
Underfitting is another common problem in machine learning. * The model is too simple to fit the
data well (e.g., approximating a high degree polynomial with linear regression). * As a result, the
model is not accurate on training data and is not accurate on new data.

Because the model cannot fit the data, we say it’s high bias.

1

https://www.deeplearning.ai/machine-learning-yearning/


6 Learning Curves
Learning curves show performance as a function of training set size.

Learning curves are defined for fixed hyperparameters. Observe that dev set error decreases as
we give the model more data.

7 Visualizing Ideal Performance
It is often very useful to have a target upper bound on performance (e.g., human accuracy); it can
also be visualized on the learning curve.

Extrapolating the red curve suggests how much additional data we need.

In the example below, the dev error has plateaued and we know that adding more data will not be
useful.

8 Learning Curves for the Training Set
We can further augment this plot with training set performance.

The blue curve shows training error as a function of training set size.

A few observations can be made here: * Training error is normally less that dev set error: the
training set is easier to fit. * Training error increases with training set size because our model
overfits small datasets.

9 Diagnosing High Bias
Learning curves can reveal when we have a bias problem.

Here, the model can’t fit larger datasets, hence it’s underfitting.

In practice, in can be hard to visually assess if the dev error has plateaued. Adding the training
error makes this easier.

Here, adding data can no longer help: the blue error can only increase and thus dev error cannot
decrease.

10 Relationship to Bias/Variance Analysis
Bias/variance analysis correspond to looking at the very last point on the learning curves.

Looking at the entire curve ensures a more reliable diagnosis.

11 Diagnosing High Variance
The following plot shows we have high variance.

Training error is small (near optimal), but dev set error is large. We can address this by adding
more data.

2



In this plot, we have both high variance and high bias.

The training error significantly exceeds desired performance, and the dev set error is even higher.

12 Practical Considerations
In practice, the following tricks are useful. * When data is small, performance estimates are noisy,
and curves are non-smooth. * The solution is to average over multiple models trained on random
subsets of m points, for each m. * If classes are imbalanced, choose metrics that account for this.

13 Learning Curves: An Example
To further illustrate the idea of learning curves, consider the following example.

We will use the sklearn digits dataset, a downscaled version of MNIST.

[16]: # Example from https://scikit-learn.org/stable/auto_examples/model_selection/
↪→plot_learning_curve.html

from sklearn.datasets import load_digits
X, y = load_digits(return_X_y=True)

We can visualize these digits as follows:

[17]: from matplotlib import pyplot as plt

plt.figure(figsize=(8,16))
_, axes = plt.subplots(2, 5)
images_and_labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes.flatten(), images_and_labels[:10]):

ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title('Digit %i' % label)

<Figure size 576x1152 with 0 Axes>

3



This is boilerplate code for visualizing learning curves and it’s not essential to understand this
example.

[30]: import numpy as np
from sklearn.model_selection import learning_curve

def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,
n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):

"""Generate learning curves for an algorithm."""
if axes is None:

_, axes = plt.subplots(1, 3, figsize=(20, 5))

axes[0].set_title(title)
if ylim is not None:

axes[0].set_ylim(*ylim)
axes[0].set_xlabel("Training examples")
axes[0].set_ylabel("Score")

train_sizes, train_scores, test_scores, fit_times, _ = \
learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,

train_sizes=train_sizes,
return_times=True)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fit_times_mean = np.mean(fit_times, axis=1)
fit_times_std = np.std(fit_times, axis=1)

4



# Plot learning curve
axes[0].grid()
axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std,

train_scores_mean + train_scores_std, alpha=0.1,
color="r")

axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color="g")

axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training Accuracy")

axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Dev Set Accuracy")

axes[0].legend(loc="best")

return plt

We visualize learning curves for two algorithms: * Gaussian Naive Bayes model, a version of Naive
Bayes for continuous inputs x * A support vector machine with a radial basis function (RBF) kernel

[31]: from sklearn.model_selection import ShuffleSplit
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

fig, axes = plt.subplots(1, 2, figsize=(10, 5))

# This is a technical detail, but we will obtain dev set performance via
# cross-valation rather that via a dev set.
# Cross validation is a technique that emulates a separate dev set with small␣
↪→data.

# We also use 100 iterations to get smoother mean test and train curves,
# each time with 20% data randomly selected as a validation set.
cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)

title = "Learning Curves (Naive Bayes)"
plot_learning_curve(GaussianNB(), title, X, y, axes=[axes[0]], ylim=(0.7, 1.
↪→01), cv=cv, n_jobs=4)

cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = r"Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
plot_learning_curve(SVC(gamma=0.001), title, X, y, axes=[axes[1]], ylim=(0.7, 1.
↪→01),cv=cv, n_jobs=4)

[31]: <module 'matplotlib.pyplot' from
'/Users/kuleshov/work/env/aml/lib/python3.6/site-packages/matplotlib/pyplot.py'>

5



We can draw a few takeways: * The Gaussian model is very simple for this task: performance
saturates after ~1,400 examples. * The SVM is much more expressive: it keeps improving in dev
set performance as we give it more data.

14 Limitations of Learning Curves
The main limitations of learning curves include: 1. Computational time needed to learn the curves.
2. Learning curves can be noisy and require human intuition to read.

15 Part 2: Loss Curves
Another way to understand the performance of the model is to visualize its objective as we train
the model.

This section is based on materials by Andrej Karpathy.

16 Review: Model Development Workflow
The machine learning development workflow has three steps: 1. Training: Try a new model and
fit it on the training set.

2. Model Selection: Estimate performance on the development set using metrics. Based on
results, try a new model idea in step #1.

3. Evaluation: Finally, estimate real-world performance on test set.

6

https://cs231n.github.io/neural-networks-3/


17 Loss Curves
Many algorithms minimize a loss function using an iterative optimization procedure like gradient
descent.

Loss curves plot the training objective as a function of the number of training steps on training
or development datasets.

18 Diagnosing Bias and Variance
Loss curves provide another way to diagnose bias and variance.

A few observations can be made here: * As we train the model for more epochs, training accuracy
improves. * When we are not overfitting (green), validation accuracy tracks training accuracy.

• When we overfit (blue), validation and training accuracies have a large gap, and validation
accuracy eventually even decreases.

19 Overtraining
A failure mode of some machine learning algorithms is overtraining.

Model performance worsens after some number of training steps. The solution is to train for less
or preferrably to regularize the model.

A closely related problem is undertraining: not training the model for long enough.

This can be diagnosed via a learning curve that shows that dev set performance is still on an
improving trajectory.

20 Diagnosing Optimization Issues
Loss curves also enable diagnosing optimization problems.

Here, we show training set accuracy for different learning rates.

Each line is a loss curve with a different learning rate (LR). * The blue training is still decreasing
at the end: the LR is too low. * The green line plateaus too soon and too high indicating a high
LR. * The yellow curve explodes: the LR was soo high that parameters took a step into a very bad
direction.

The red loss curve is not too fast and not too slow.

21 Pros and Cons of Loss Curves
Advantages of using loss curves include the following. 1. Producing loss curves doesn’t require
extra computation. 2. Loss curves can detect optimization problems and overtraining.

Loss curves don’t diagnose the utility of adding more data; when bias/variance diagnosis is am-
biguous, use learning curves.

7



22 Part 3: Validation Curves
Validation curves help us understand the effects of different hyper-parameters.

23 Review: Model Development Workflow
The machine learning development workflow has three steps: 1. Training: Try a new model and
fit it on the training set.

2. Model Selection: Estimate performance on the development set using metrics. Based on
results, try a new model idea in step #1.

3. Evaluation: Finally, estimate real-world performance on test set.

24 Validation Curves
ML models normally have hyper-parameters, e.g. L2 regularization strength, neural net layer size,
number of K-Means clusters, etc.

Loss curves plot model peformance as a function of hyper-parameter values on training or
development datasets.

25 Validation Curve: An Example
Consider the following example, in which we train a Ridge model on the digits dataset.

Recall the digits dataset introduced earlier in this lecture.

[3]: from matplotlib import pyplot as plt

plt.figure(figsize=(8,16))
_, axes = plt.subplots(2, 5)
images_and_labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes.flatten(), images_and_labels[:10]):

ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title('Digit %i' % label)

<Figure size 576x1152 with 0 Axes>

8



We can train an SVM with and RBF kernel for different values of bandwidth γ using the
validation_curve function.

[32]: from sklearn.model_selection import validation_curve

# https://scikit-learn.org/stable/auto_examples/model_selection/
↪→plot_validation_curve.html

param_range = np.logspace(-6, -1, 5)
train_scores, test_scores = validation_curve(

SVC(), X, y, param_name="gamma", param_range=param_range,
scoring="accuracy", n_jobs=1)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

We visualize this as follows.

[34]: plt.title("Validation Curve with SVM")
plt.xlabel(r"$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
lw = 2
plt.semilogx(param_range, train_scores_mean, label="Training accuracy",

color="darkorange", lw=lw)
plt.fill_between(param_range, train_scores_mean - train_scores_std,

train_scores_mean + train_scores_std, alpha=0.2,
color="darkorange", lw=lw)

plt.semilogx(param_range, test_scores_mean, label="Validation accuracy",

9



color="navy", lw=lw)
plt.fill_between(param_range, test_scores_mean - test_scores_std,

test_scores_mean + test_scores_std, alpha=0.2,
color="navy", lw=lw)

plt.legend(loc="best")

[34]: <matplotlib.legend.Legend at 0x12cce2f98>

This shows that the SVM: * Underfits for small values of γ < 10−5 * Overfits for large values of
γ > 10−3 and the training and validation curves diverge.

Medium values of γ are just right.

26 Part 4: Distribution Mismatch
So far, we assumed that the distributions across different datasets are relatively similar.

When that is not the case, we may run into errors.

27 Review: Datasets for Model Development
When developing machine learning models, it is customary to work with three datasets: * Training
set: Data on which we train the models. * Development set (validation or hold-out set): Data
used for tuning models. * Test set: Data for evaluating the final performance of our model.

10



28 Review: Choosing Dev and Test Sets
The development and test sets should be from the data distribution we will see in production.

• This is because we want to be optimizing performance in deployment (e.g., classification
accuracy on dog images).

• The training data could potentially be from a different distribution (e.g., include other types
of animal images).

29 Distribution Mismatch
We talk about distribution mismatch when the previously stated conditions don’t hold, i.e. we have
the following: 1. Our dev and test sets are no longer representative. 2. Our training set is too
different from the dev set.

30 Considerations For The Training Set
When adding more data to the training set, 1. The new data needs to be useful, e.g., images of
animals (but probably not cars!) for a cats classifier. 2. The model needs to be expressive to be
accurate on all types of input data.

31 The Training Dev Set
In order to diagnose mismatch problems between the training and dev sets, we may create a new
dataset.

The training dev set is a random subset of the training set used as a second validation set.

32 Diagnosing Bias and Variance
We may use this new dataset to diagnose distribution mismatch. Suppose dev set error is high. * If
the training error is low, but training dev and standard dev errors are high, we are overfitting. * If
the training and training dev errors are low, but dev error are high, we have distribution mismatch.

As an example, suppose are building a cat image classifier. * The training set consists of cats and
other animals. * The traning dev set also containts cats and other animals. * The dev and test
sets only contain cats.

Consider the following example: * Our training set error is 2%. * Our training dev set error is 6%.
* Our dev set error is 6%.

This is a typical example of high variance (overfitting).

Next, consider another example: * Our training set error is 10%. * Our training dev set error is
11%. * Our dev set error is 12%. * Human error is 1%.

This looks like an example of high avoidable bias (underfitting).

Finally, suppose you see the following: * Our training set error is 4%. * Our training dev set error
is 5%. * Our dev set error is 13%.

11



This is a model that is generalizing to the training dev set, but not the standard dev set. Distri-
bution mismatch is a problem.

33 Quantifying Distribution Mismatch
We may quantify this issue more precisely using the following decomposition.

dev error = (dev error− dev train error︸ ︷︷ ︸
distribution mismatch

)

+ (dev train error− train error︸ ︷︷ ︸
variance

) + (train error− opt error︸ ︷︷ ︸
avoidable bias

)

+ opt error︸ ︷︷ ︸
unavoidable bias

34 Beyond the Training Set
We may also apply this analysis to the dev and test sets to determine if they’re stale. 1. First,
collect additional real-world data. 2. If the model generalizes well the current dev and test sets
but not the real-world data, the current data is stale!

35 Addressing Data Mismatch
Correcting data mismatch requires: 1. Understanding the properties of the data that cause the
mismatch. 2. Removing mismatching data and adding data that matches better.

The best way to understand data mismatch is using error analysis.

12


	Lecture 22: Tools for Diagnosing Model Performance
	Applied Machine Learning

	Practical Considerations When Applying Machine Learning
	Part 1: Learning Curves
	Review: Overfitting (Variance)
	Review: Underfitting (Bias)
	Learning Curves
	Visualizing Ideal Performance
	Learning Curves for the Training Set
	Diagnosing High Bias
	Relationship to Bias/Variance Analysis
	Diagnosing High Variance
	Practical Considerations
	Learning Curves: An Example
	Limitations of Learning Curves
	Part 2: Loss Curves
	Review: Model Development Workflow
	Loss Curves
	Diagnosing Bias and Variance
	Overtraining
	Diagnosing Optimization Issues
	Pros and Cons of Loss Curves
	Part 3: Validation Curves
	Review: Model Development Workflow
	Validation Curves
	Validation Curve: An Example
	Part 4: Distribution Mismatch
	Review: Datasets for Model Development
	Review: Choosing Dev and Test Sets
	Distribution Mismatch
	Considerations For The Training Set
	The Training Dev Set
	Diagnosing Bias and Variance
	Quantifying Distribution Mismatch
	Beyond the Training Set
	Addressing Data Mismatch

