
lecture19-dimensionality-reduction

March 11, 2022

1 Lecture 19: Dimensionality Reduction
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: What is Dimensionality Reduction?
Dimensionality reduction is another important unsupervised learning problem with many applica-
tions.

We will start by defining the problem and providing some examples.

3 Review: Unsupervised Learning
We have a dataset without labels. Our goal is to learn something interesting about the structure
of the data: * Clusters hidden in the dataset. * Outliers: particularly unusual and/or interesting
datapoints. * Useful signal hidden in noise, e.g. human speech over a noisy phone.

4 Dimensionality Reduction: Examples
Consider a dataset D = {x(i) | i = 1, 2, ..., n} of motorcylces, characterized by a set of attributes.
* Attributes include size, color, maximum speed, etc. * Suppose that two attributes are closely
correlated: e.g., x(i)j is the speed in mph and x

(i)
k is the speed in km/h. * The real dimensionality of

the data is d− 1!

We would like to automatically identify the right data dimensionality.

Another example can be obtained on the Iris flower dataset.

[3]: # import standard machine learning libraries
import numpy as np
import pandas as pd
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris()

Consider the petal length and the petal width of the flowers: they are closely correlated.

1

This suggests that we may reduce the dimensionality of the problem to one dimension: petal size.

[4]: from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

Visualize the Iris flower dataset
setosa_flowers = (iris.target == 0)
plt.scatter(iris.data[setosa_flowers,0], iris.data[setosa_flowers,1], alpha=0.5)
plt.plot([4.3, 5.8], [2.8, 4.2], '->')
plt.ylabel("Sepal width (cm)")
plt.xlabel("Sepal length (cm)")
plt.legend(['"Size" Dimension'])

[4]: <matplotlib.legend.Legend at 0x12bdea4e0>

5 Dimensionality Reduction
More generally, a dimensionality reduction algorithm learns from data an unsupervised model

fθ : X → Z,

where Z is a low-dimensional representation of the data.

For each input x(i), fθ computes a low-dimensional representation z(i).

6 Linear Dimensionality Reduction
Suppose X = Rd and Z = Rp for some p < d. The transformation

fθ : X → Z

is a linear function with parameters θ = W ∈ Rd×p that is defined by

z = fθ(x) = W⊤ · x.

The latent dimension z is obtained from x via a matrix W .

2

7 Example: Discovering Structure in Digits
Dimensionality reduction can reveal interesting structure in digits without using labels.

8 Example: DNA Analysis
Even linear dimensionality reduction is powerful. Here, in uncovers the geography of European
countries from only DNA data

9 Other Kinds of Dimensionality Reduction
We will focus on linear dimensionality reduction this lecture, but there exist many other meth-
ods: * Non-linear methods based on kernels (e.g., Kernel PCA) * Non-linear methods based on
deep learning (e.g., variational autoencoders) * Non-linear methods based on maximizing signal
independence (independent component analysis) * Probabilistic versions of the above

See the scikit-learn guide for more!

Part 2: Principal Component Analysis

We will now describe principal component analysis (PCA), one of the most widely used algorithms
for dimensionality reduction.

10 Components of an Unsupervised Learning Problem
At a high level, an unsupervised machine learning problem has the following structure:

Dataset︸ ︷︷ ︸
Attributes

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Unsupervised Model

The dataset D = {x(i) | i = 1, 2, ..., n} does not include any labels.

11 Review: Linear Dimensionality Reduction
Suppose X = Rd and Z = Rp for some p < d. The transformation

fθ : X → Z

is a linear function with parameters θ = W ∈ Rd×p that is defined by

z = fθ(x) = W⊤x.

The latent dimension z is obtained from x via a matrix W .

3

https://scikit-learn.org/stable/modules/unsupervised_reduction.html

12 Principal Components Model
Principal component analysis (PCA) assumes that * Datapoints x ∈ Rd live close to a low-
dimensional subspace Z = Rp of dimension p < d * The subspace Z = Rp is spanned by a set of
orthonormal vectors w(1), w(2), . . . , w(p) * The data x are approximated by a linear combination x̃
of the w(k)

x ≈ x̃ =

p∑
k=1

w(k)zk = Wz

for some z ∈ X that are the coordinates of x̃ in the basis W .

In this example, the data lives in a lower-dimensional 2D plane within a 3D space (image credit).

We can choose a basis W for this plane. The coordinates in this basis are denoted by z (image
credit).

The model for PCA is a function fθ of the form

z = fθ(x) = W⊤x,

where θ = W and W is a d × p matrix of p orthonormal column vectors denoted as
w(1), w(2), . . . , w(p).

This model enables performing two tasks: * Encoding: z = W⊤x, finding the low-dimensional rep-
resentation of input x * Decoding: x̃ = Wz, converting a low-dimensional z to a high-dimensional
representation x

13 PCA Objective: Reconstruction
How do we find a good subpace Z as defined by a set of orthonormal vectors W?

A natural objective is to minimize the reconstruction error

J1(W) =
n∑

i=1

∥x(i) − x̃(i)∥22 =
n∑

i=1

∥x(i) −WW⊤x(i)∥22

between each input x(i) and its approximate reconstruction

x̃(i) = W · z(i) = W ·W⊤ · x(i).

In this example, if the points don’t lie perfectly on a plane, we choose the plane such that the
points’ distance to it is minimized (image credit).

14 PCA Objective: Maximizing Variance
An alternative objective for learning a PCA model is maximizing variance.

We start with some intuition. Consider the Iris flower we have seen earlier.

Below, we can project the data along the blue line or the orange line.

The blue line is better because it captures the shape of the data and can be naturally interpreted
as “sepal size”.

4

https://doc.plob.org/machine_learning/14_Dimensionality_Reduction.html
https://doc.plob.org/machine_learning/14_Dimensionality_Reduction.html
https://doc.plob.org/machine_learning/14_Dimensionality_Reduction.html

[5]: from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

Visualize the Iris flower dataset
setosa_flowers = (iris.target == 0)
plt.scatter(iris.data[setosa_flowers,0], iris.data[setosa_flowers,1], alpha=0.5)
plt.plot([4.3, 5.8], [2.8, 4.2], '->')
plt.plot([5.05, 4.99], [2.85, 4.1])
plt.ylabel("Sepal width (cm)")
plt.xlabel("Sepal length (cm)")
plt.legend(['"Size" Dimension', '"Other" Dimension'])

[5]: <matplotlib.legend.Legend at 0x12c073d68>

How do we automatically identify such natural directions of variation in the data? Consider the
following dataset (image by Andrew Ng).

One way to reduce the dimensionality of this dataset from is to project it along the following line.

Projected data is tightly clustered around its mean. It has low variance.

An alternative projection is along the following line. Data is much more spread out: it has high
variance around its mean.

Our goal is to identify this direction automatically.

We may formalize this as follows. * Let Ê[f(x)] denote empirical expectation for any f :

Ê[f(x)] =
1

n

n∑
i=1

f(x(i)).

• Assume that we have centered the data, i.e.

Ê[x] = 0 and thus Ê[W⊤x] = W⊤Ê[x] = 0.

5

http://cs229.stanford.edu/

• The the variance of the projected data is

Ê
[
∥z − Ê[z]∥2

]
= Ê

[
∥W⊤x− Ê[W⊤x]∥2

]
= Ê

[
∥W⊤x∥2

]
Thus, the variance objective is simply

J2(W) = Ê
[
∥W⊤x∥2

]
=

1

n

n∑
i=1

∥W⊤x(i)∥22.

15 Equivalence Between PCA Objectives
It turns out that minimizing reconstruction error and maximizing variance are equivalent.

argmin
W

J1(W) = argmax
W

J2(W).

This image by Alex Williams provides intuition.

Consider the operator WW⊤x. We can decompose any x into a sum of two orthoginal vectors:

x = x+WW⊤x−WW⊤x

= WW⊤x︸ ︷︷ ︸
projected data x̃ (D1)

+ (I −WW⊤)x︸ ︷︷ ︸
difference between datapoint x and x̃ (D2)

We can compute the norm of both sides to obtain

∥x∥22 = ∥WW⊤x+ (I −WW⊤)x∥22
= ∥WW⊤x∥22 + ∥(I −WW⊤)x∥22
= ∥W⊤x∥22 + ∥(I −WW⊤)x∥22

* In the second line we used the fact that WW⊤x and (I−WW⊤)x are orthogonal (easy to check)
* In the third line we used that ∥Wa∥ = ∥a∥ for any vector a and orthogonal matrix W .

Thus we find that

J1(W) =
n∑

i=1

∥(I −WW⊤)x(i)∥22

=
n∑

i=1

(
∥x(i)∥22 − ∥W⊤x(i)∥22

)
= −n · J2(W) + const.

and minimizing the reconstruction objective J1 is the same as maximizing the variance objective
J2.

6

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

16 Finding Principal Components
Next, how do we optmimize either of these objectives? Let’s look at the variance objective J2,
which we can write as:

J2(W) =
1

n

n∑
i=1

∥W⊤x(i)∥22 =
1

n

n∑
i=1

p∑
j=1

((w(j))⊤x(i))2

where w(j) is the j-th column of W and Σ̂ = 1
n

∑n
i=1

(
x(i)(x(i))⊤

)
is the empirical covariance matrix

of the data.

We can further write this as:

J2(W) =
1

n

n∑
i=1

∥W⊤x(i)∥22 =
1

n

n∑
i=1

p∑
j=1

((w(j))⊤x(i))2

=
1

n

n∑
i=1

p∑
j=1

(
(w(j))⊤x(i)

)
·
(
(x(i))⊤w(j)

)

=

p∑
j=1

(w(j))⊤ ·

(
1

n

n∑
i=1

x(i)(x(i))⊤

)
· w(j)

=

p∑
j=1

(w(j))⊤ · Σ̂ · w(j),

where Σ̂ = 1
n

∑n
i=1

(
x(i)(x(i))⊤

)
is the empirical covariance matrix of D.

Recall that the positive semidefinite matrix Σ̂ has an eigendecomposition

Σ̂ = QΛQ⊤ =

d∑
j=1

λjq
(j)(q(j))⊤.

* Q is a matrix whose columns are orthonormal eigenvectors q(j) for j = 1, 2, . . . , d. * Λ is a
diagonal matrix of positive eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd.

Consider our optimization problem for p = 1:

J(w) = w⊤ · Σ̂ · w.

How do we find the best projection vector w?

Using the eigendecomposition, we can write this as:

J(w) = w⊤ ·QΛQ⊤ · w =

d∑
j=1

λj(w
⊤q(j))2.

The optimal solution to

max
w

J(w) = max
w

d∑
j=1

λj(w
⊤q(j))2

is attained by the top eigenvector w = q(1). The optimum is J(q(1)) = λ1.

7

• Let aj = (w⊤q(j))2 and note that
∑

j a
2
j = ||Qw||22 = 1 because all vectors are orthonormal.

• Our objective J(w) =
∑d

j=1 λja
2
j is a weighted average of λj

• The weighted average
∑d

j=1 λja
2
j attains a maximum of λ1 when all “weight” goes to a1 = 1

and w = q(1).

More generally when p > 1, our objective is

J(W) =

p∑
k=1

d∑
j=1

λj((w
(k))⊤q(j))2

where W is a matrix of orthonormal columns w(1), w(2), . . . , w(p).

By analogy with the previous example, * J(W) is maximized when w(1) = q(1), w(2) = q(2), …,
w(p) = q(p) * The maximum value attained is λ1 + λ2 + . . .+ λp * We refer to

λ1 + λ2 + . . .+ λp

λ1 + λ2 + . . .+ λd

as the proportion of variance explained by the lower-dimensional projection z = W⊤x. When d = p
it is one.

17 Algorithm: Principal Component Analysis
• Type: Unsupervised learning (dimensionality reduction)
• Model family: Linear projection W⊤z of low-dimensional z
• Objective function: Reconstruction error or variance maximization
• Optimizer: Matrix eigendecomposition

18 Practical Considerations
When applying PCA, the following tricks are useful. * Before applying PCA, it is important to
normalize the data to have zero mean and unit variance.

x
(i)
j ←

x
(i)
j − µj

σj
for all i, j,

where µj , σj are the mean and variance along the j-th dimension. * This address scaling issues due
to choice of units (km/h vs cm/h). * In order to choose the optimal number of components, we can
apply the Elbow method.

19 An Example: Iris Flowers
Let’s look at an example over the Iris flower dataset. In its entirety, it has four dimensions; let’s
visualize it in 3D by looking at the first 3 dimensions.

[46]: from mpl_toolkits.mplot3d import Axes3D

form the design matrix and target vector

8

X, y = iris.data, iris.target
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)

display data in 3D
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
ax.set_xlabel("Sepal length")
ax.set_ylabel("Sepal width")
ax.set_zlabel("Petal length")
p1 = ax.scatter(X[:, 0], X[:, 1], X[:, 2], edgecolor='k', s=40)

We can implement PCA using a small number of numpy operations.

9

[36]: def pca_project(X, p=2):
Sigma = X.T.dot(X) / X.shape[0] # form covariance matrix
L, Q = np.linalg.eig(Sigma) # perform eigendecomposition
W = Q[:,:p] # get top p eigenvectors
Z = X.dot(W) # project on these eigenvectors
return Z

Visualizing the data, we obtain the following structure.

[41]: Z = pca_project(X, p=2)
plt.scatter(Z[:,0], Z[:,1])

[41]: <matplotlib.collections.PathCollection at 0x12d072828>

We can also add labels. The classes are well-separated.

[42]: plt.scatter(Z[:,0], Z[:,1], c=y, cmap=plt.cm.Paired)

[42]: <matplotlib.collections.PathCollection at 0x12cbc9f60>

10

The separation is better than if we just chose the first two dimensions.

[43]: plt.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.Paired)

[43]: <matplotlib.collections.PathCollection at 0x12c8c2cf8>

We can train two classifiers on this data and compare their accuracy.

PCA dimensions result in better accuracy that just choosing the first two dimensions.

[50]: from sklearn.linear_model import LogisticRegression

train softmax on non-PCA data
logreg1 = LogisticRegression(C=1e5, multi_class='multinomial')
logreg1.fit(X[:,:2], y)
print('Accuracy on first two dimensions: %.2f' % logreg1.score(X[:,:2],y))

train softmax on PCA data
logreg2 = LogisticRegression(C=1e5, multi_class='multinomial')
logreg2.fit(Z, y)
print('Accuracy on two PCA dimensions: %.2f' % logreg2.score(Z,y))

Accuracy on first two dimensions: 0.83
Accuracy on two PCA dimensions: 0.92

20 Pros and Cons of PCA
PCA is perhaps the most widely used dimensionality reduction algorithm. * It is both highly
intuitive and effective * It is also fast and easy to implement

Its limitations include: * Linear projections may be too limited in some applications * Choosing
the right dimension p can be somewhat of an art

11

	Lecture 19: Dimensionality Reduction
	Applied Machine Learning

	Part 1: What is Dimensionality Reduction?
	Review: Unsupervised Learning
	Dimensionality Reduction: Examples
	Dimensionality Reduction
	Linear Dimensionality Reduction
	Example: Discovering Structure in Digits
	Example: DNA Analysis
	Other Kinds of Dimensionality Reduction
	Components of an Unsupervised Learning Problem
	Review: Linear Dimensionality Reduction
	Principal Components Model
	PCA Objective: Reconstruction
	PCA Objective: Maximizing Variance
	Equivalence Between PCA Objectives
	Finding Principal Components
	Algorithm: Principal Component Analysis
	Practical Considerations
	An Example: Iris Flowers
	Pros and Cons of PCA

