
lecture17-density-estimation

February 8, 2022

1 Lecture 17: Density Estimation
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Unsupervised Probabilistic Models
Density estimation is the problem of estimating a probability distribution from data.

As a first step, we will introduce probabilistic models for unsupervised learning.

3 Review: Unsupervised Learning
We have a dataset without labels. Our goal is to learn something interesting about the structure
of the data: * Clusters hidden in the dataset. * Outliers: particularly unusual and/or interesting
datapoints. * Useful signal hidden in noise, e.g. human speech over a noisy phone.

4 Components of an Unsupervised Learning Problem
At a high level, an unsupervised machine learning problem has the following structure:

Dataset︸ ︷︷ ︸
Attributes

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Unsupervised Model

The unsupervised model describes interesting structure in the data. For instance, it can identify
interesting hidden clusters.

5 Review: Data Distribution
We will assume that the dataset is sampled from a probability distribution Pdata, which we will call
the data distribution. We will denote this as

x ∼ Pdata.

The dataset D = {x(i) | i = 1, 2, ..., n} consists of independent and identicaly distributed (IID)
samples from Pdata.

1

6 Review: Unsupervised Models
We’ll say that a model is a function

f : X → S

that maps inputs x ∈ X to some notion of structure s ∈ S.

Structure can have many definitions (clusters, low-dimensional representations, etc.), and we will
see many examples.

Often, models have parameters θ ∈ Θ living in a set Θ. We will then write the model as

fθ : X → S

to denote that it’s parametrized by θ.

7 Unsupervised Probabilistic Models
An unsupervised probabilistic model is a probability distribution

P (x) : X → [0, 1].

This model can approximate the data distribution Pdata.

Probabilistic models also have parameters θ ∈ Θ, which we denote as

Pθ(x) : X → [0, 1].

8 Why Use Probabilistic Models?
There are many tasks that we can solve with a good model Pθ. 1. Generation: sample new
objects from Pθ, such as images. 2. Representation learning: find interesting structure in Pdata 3.
Density estimation: approximate Pθ ≈ Pdata and use it to solve any downstream task (generation,
clustering, outlier detection, etc.).

We are going to be interested in the latter.

9 Kullback-Leibler Divergence
In order to approximate Pdata with Pθ, we need a measure of distance between distributions.

A standard measure of similarity between distributions is the Kullback-Leibler (KL) divergence
between two distributions p and q, defined as

D(p∥q) =
∑

x
p(x) log p(x)

q(x) .

2

Observations:

• D(p ∥ q) ≥ 0 for all p, q, with equality if and only if p = q. Proof:

D(p∥q) = Ex∼p− log q(x)
p(x) ≥ − log

(
Ex∼p

q(x)
p(x)

)
=− log

(∑
x

p(x)q(x)
p(x)

)
= 0

where in the first line we used Jensen’s inequality

• The KL-divergence is asymmetric, i.e., D(p∥q) ̸= D(q∥p)

10 Learning Models Using KL Divergence
We may now learn a probabilistic model Pθ(x) that approximates Pdata(x) via the KL divergence:

D(Pdata || Pθ) = Ex∼Pdata log
(
Pdata(x)

Pθ(x)

)
=
∑
x

Pdata(x) log
Pdata(x)

Pθ(x)

Note that D(Pdata || Pθ) = 0 iff the two distributions are the same.

11 From KL Divergence to Log Likelihood
$

$

We can learn Pθ that approximates Pdata by minimizing D(Pdata || Pθ). This objective further
simplifies as:

D(Pdata || Pθ) = Ex∼Pdata log
(
Pdata(x)

Pθ(x)

)
= Ex∼Pdata logPdata(x)− Ex∼Pdata logPθ(x)

The first term does not depend on Pθ: minimizing KL divergence is equivalent to maximizing the
expected log-likelihood.

argmin
Pθ

D(Pdata || Pθ) = argmin
Pθ

−Ex∼Pdata logPθ(x)

= argmax
Pθ

Ex∼Pdata logPθ(x)

• This asks that Pθ assign high probability to instances sampled from Pdata, so as to reflect the
true distribution.

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in the objective.

Problem: In general we do not know Pdata, hence expected value is intractable.

3

https://en.wikipedia.org/wiki/Jensen%27s_inequality

12 Maximum Likelihood Estimation
$

$

Applying, Monte Carlo estimation, we may approximate the expected log-likelihood

Ex∼Pdata logPθ(x)

with the empirical log-likelihood:

ED∼Pθ(x) =
1

|D|
∑
x∈D

logPθ(x)

Maximum likelihood learning is then:

max
Pθ

1

|D|
∑
x∈D

logPθ(x).

13 Example: Flipping a Random Coin
How should we choose Pθ(x) if 3 out of 5 coin tosses are heads? Let’s apply maximum likelihood
learning.

• Our model is Pθ(x = H) = θ and Pθ(x = T) = 1− θ
• Our data is: D = {H,H, T,H, T}
• The likelihood of the data is

∏
i Pθ(xi) = θ · θ · (1− θ) · θ · (1− θ).

We optimize for θ which makes D most likely. What is the solution in this case?

[1]: %matplotlib inline
import numpy as np
from matplotlib import pyplot as plt

our dataset is {H, H, T, H, T}; if theta = P(x=H), we get:
coin_likelihood = lambda theta: theta*theta*(1-theta)*theta*(1-theta)

theta_vals = np.linspace(0,1)
plt.plot(theta_vals, coin_likelihood(theta_vals))

[1]: [<matplotlib.lines.Line2D at 0x1168f7390>]

4

Part 2: Kernel Density Estimation

Next, let’s look at a first example of probabilistic models and how they are used to perform density
estimation.

14 Review: Data Distribution
We will assume that the dataset is sampled from a probability distribution P, which we will call
the data distribution. We will denote this as

x ∼ Pdata.

The dataset D = {x(i) | i = 1, 2, ..., n} consists of independent and identicaly distributed (IID)
samples from Pdata.

15 Review: Unsupervised Probabilistic Models
An unsupervised probabilistic model is a probability distribution

Pθ(x) : X → [0, 1].

This model can approximate the data distribution Pdata. It may have parameters θ.

16 Density Estimation
The problem of density estimation is to approximate the data distribution Pdata with the model P .

P ≈ Pdata.

5

It’s also a general learning task. We can solve many downstream tasks using a good model P : *
Outlier and novelty detection * Generating new samples x * Visualizing and understanding the
structure of Pdata

17 Histogram Density Estimation
Perhaps the simplest approach to density estimation is by forming a histogram.

A histogram partitions the input space x into a d-dimensional grid and counts the number of points
in each cell.

This is best illustrated by an example.

Let’s start by creating a simple 1D dataset coming from a mixture of two Gaussians:

Pdata(x) = 0.3 · N (x;µ = 0, σ = 1) + 0.7 · N (x;µ = 5, σ = 1)

[23]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
import numpy as np
np.random.seed(1)

N = 20 # number of points
concat samples from two Gaussians:
X = np.concatenate((

np.random.normal(0, 1, int(0.3 * N)),
np.random.normal(5, 1, int(0.7 * N))

))[:, np.newaxis]
bins = np.linspace(-5, 10, 10) # locations of the bins

print out X
print(X.flatten())

[1.62434536 -0.61175641 -0.52817175 -1.07296862 0.86540763 -2.3015387
6.74481176 4.2387931 5.3190391 4.75062962 6.46210794 2.93985929
4.6775828 4.61594565 6.13376944 3.90010873 4.82757179 4.12214158
5.04221375 5.58281521]

We can now estimate the density using a histogram.

[41]: import matplotlib.pyplot as plt

plt.hist(X[:, 0], bins=bins, density=True) # plot the histogram
plt.plot(X[:, 0], np.full(X.shape[0], -0.01), '.k', markersize=10) # plot the␣
↪→points in X

plt.xlim(-4, 9)
plt.ylim(-0.02, 0.25)

[41]: (-0.02, 0.25)

6

18 Limitations of Histograms
Histogram-based methods have a number of shortcomings. * The number of grid cells increases
exponentially with dimension d. * The histogram is not “smooth”. * The shape of the histogram
depends on the bin positions.

We will now try to address the last two limitations.

Let’s also visualize what we mean when we say that shape of the histogram depends on the histogram
bins.

[38]: fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(12,4))
ax[0].hist(X[:, 0], bins=bins, density=True) # plot the histogram
ax[1].hist(X[:, 0], bins=bins+0.75, density=True) # plot the histogram with bin␣
↪→centers shifted by 0.75

for axi in ax.ravel():
axi.plot(X[:, 0], np.full(X.shape[0], -0.01), '.k', markersize=10) # plot␣

↪→the points in X
axi.set_xlim(-4, 9)
axi.set_ylim(-0.02, 0.3)

7

19 Kernel Density Estimation: Idea
Kernel density estimation (KDE) is a different approach to histogram estimation. * A histogram
has b bins of width δ at fixed positions. * KDE effectively places a bin of with δ at each x ∈ X . *
To obtain P (x), we count the % of points that fall in the bin centered at x.

20 Tophat Kernel Density Estimation
The simplest form of this strategy (Tophat KDE) assumes a model of the form

Pδ(x) =
N(x; δ)

n
,

where
N(x; δ) = |{x(i) : ||x(i) − x|| ≤ δ/2}|,

is the number of points that are within a bin of with δ centered at x.

This is best understood via a picture.

[47]: from sklearn.neighbors import KernelDensity

kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) # fit a KDE model
x_ticks = np.linspace(-5, 10, 1000)[:, np.newaxis] # choose 1000 points on␣
↪→x-axis

log_density = kde.score_samples(x_ticks) # compute density at 1000 points

plt.fill(x_ticks[:, 0], np.exp(log_density)) # plot the density estimate
plt.plot(X[:, 0], np.full(X.shape[0], -0.01), '.k', markersize=10) # plot the␣
↪→points in X

plt.xlim(-4, 9)
plt.ylim(-0.02, 0.32)

[47]: (-0.02, 0.32)

8

The above algorithm still has the problem of producing a density estimate that is not smooth.

We are going to resolve this by replacing histogram counts with weighted averages.

21 Review: Kernels
A kernel function K : X ×X → [0,∞] maps pairs of vectors x, z ∈ X to a real-valued score K(x, z).

• A kernel represents the similarity between x and z.
• It also often encodes the dot product between x and z in some high-dimensional feature space

We will use the first interpretation here.

22 Kernel Density Estimation
A kernelized density model P takes the form:

P (x) ∝
n∑

i=1

K(x, x(i)).

This can be interpreted in different ways: * We count the number of points “near” x, but each x(i)

has a weight K(x, x(i)) that depends on similarity between x, x(i). * We place a “micro-density”
K(x, x(i)) at each x(i); the final density P (x) is their sum.

23 Types of Kernels
We have seen several types of kernels in the context of support vector machines.

9

There are additional kernels that are popular for density estimation.

The following kernels are available in scikit-learn. * Gaussian kernel K(x, z; δ) ∝ exp(−||x −
z||2/2δ2) * Tophat kernel K(x, z; δ) = 1 if ||x−z|| ≤ δ/2 else 0. * Epanechnikov kernel K(x, z; δ) ∝
1 − ||x − z||2/δ2 * Exponential kernel K(x, z; δ) ∝ exp(−||x − z||/δ) * Linear kernel K(x, z; δ) ∝
(1− ||x− z||/δ)+

It’s easier to understand these kernels by looking at a figure.

[81]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
X_plot = np.linspace(-6, 6, 1000)[:, None]
X_src = np.zeros((1, 1))

fig, ax = plt.subplots(2, 3, sharex=True, sharey=True, figsize=(12,4))
fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)

def format_func(x, loc):
if x == 0:

return '0'
elif x == 1:

return '$\delta/2$'
elif x == -1:

return '-$\delta/2$'
else:

return '%iδ' % (int(x/2))

for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):

axi = ax.ravel()[i]
log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot)
axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
axi.text(-2.6, 0.95, kernel)

axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
axi.xaxis.set_major_locator(plt.MultipleLocator(1))
axi.yaxis.set_major_locator(plt.NullLocator())

axi.set_ylim(0, 1.05)
axi.set_xlim(-2.9, 2.9)

ax[0, 1].set_title('Available Kernels')

[81]: Text(0.5, 1.0, 'Available Kernels')

10

24 Kernel Density Estimation: Example
Let’s look at an example in the context of the 1D points we have seen earlier.

We will fit a model of the form

P (x) =

n∑
i=1

K(x, x(i))

with a Gaussian kernel K(x, z; δ) ∝ exp(−||x− z||2/2δ2).

[77]: from sklearn.neighbors import KernelDensity

kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) # fit a KDE model
x_ticks = np.linspace(-5, 10, 1000)[:, np.newaxis] # choose 1000 points on␣
↪→x-axis

log_density = kde.score_samples(x_ticks) # compute density at 1000 points
gaussian_kernel = lambda z : lambda x: np.exp(-np.abs(x-z)**2/(0.75**2)) #␣
↪→gaussian kernel

kernel_linspace = lambda x : np.linspace(x-1.2,x+1.2,30)

plt.figure(figsize=(12,4))
plt.plot(x_tick s[:, 0], np.exp(log_density)) # plot the density estimate
plt.plot(X[:, 0], np.full(X.shape[0], -0.01), '.k', markersize=10) # plot the␣
↪→points in X

plt.plot(kernel_linspace(4), 0.07*gaussian_kernel(4)(kernel_linspace(4)), '--',␣
↪→color='r', alpha=0.75)

plt.plot(kernel_linspace(5), 0.07*gaussian_kernel(5)(kernel_linspace(5)), '--',␣
↪→color='r', alpha=0.75)

plt.plot(kernel_linspace(1), 0.07*gaussian_kernel(1)(kernel_linspace(1)), '--',␣
↪→color='r', alpha=0.75)

plt.xlim(-4, 9)
plt.ylim(-0.02, 0.32)

[77]: (-0.02, 0.32)

11

25 KDE in Higher Dimensions
In priciple, kernel density estimation also works in higher dimensions.

However, the number of datapoints needed for a good fit incrases expoentially with the dimension,
which limits the applications of this model in high dimensions.

26 Choosing Hyperparameters
Each kernel has a notion of “bandwidth” δ. This is a hyperparameter that controls the “smoothness”
of the fit. * We can choose it using inspection or heuristics like we did for K in K-Means. * Because
we have a probabilistic model, we can also estimate likelihood on a holdout dataset (more on this
later!)

Let’s illustrate how the bandwidth affects smoothness via an example.

[91]: from sklearn.neighbors import KernelDensity

kde1 = KernelDensity(kernel='gaussian', bandwidth=3).fit(X) # fit a KDE model
kde2 = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X) # fit a KDE model

fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(12,4))
ax[0].fill(x_ticks[:, 0], np.exp(kde1.score_samples(x_ticks))) # plot the␣
↪→density estimate

ax[1].fill(x_ticks[:, 0], np.exp(kde2.score_samples(x_ticks))) # plot the␣
↪→density estimate

ax[0].set_title('Bandwidth Too High')
ax[1].set_title('Bandwidth Too Low')

for axi in ax.ravel():
axi.plot(X[:, 0], np.full(X.shape[0], -0.01), '.k', markersize=10) # plot␣

↪→the points in X
axi.set_xlim(-4, 9)

12

axi.set_ylim(-0.02, 0.4)

27 Algorithm: Kernel Density Estimation
• Type: Unsupervised learning (density estimation).
• Model family: Non-parametric. Sum of n kernels.
• Objective function: Log-likelihood to choose optimal bandwidth.
• Optimizer: Grid search.

28 Pros and Cons of KDE
Pros: * Can approximate any data distribution arbtrarily well.

Cons: * Need to store entire dataset to make queries, which is computationally prohibitive. *
Number of data needed scale exponentially with dimension (“curse of dimensionality”).

Part 3: Latent Variable Models

Probabilistic models we have seen earlier often need to approximate complex distributions.

In order to make our models more expressive, we introduce additional structure in the form of
latent variables.

29 Review: Probabilistic Models
An unsupervised probabilistic model is a probability distribution

P (x) : X → [0, 1].

This model can approximate the data distribution Pdata.

Probabilistic models also have parameters θ ∈ Θ, which we denote as

Pθ(x) : X → [0, 1].

13

30 Review: Maximum Likelihood
In maximum likelihood learning, we maximize the empirical log-likelihood

max
Pθ

1

|D|
∑
x∈D

logPθ(x),

where D = {x(i) | i = 1, 2, ..., n} is a dataset of independent and identicaly distributed (IID) samples
from Pdata.

31 Latent Variable Models: Motivation
Consider the following dataset of human faces.

• It contains variability due to gender, eye color, hair color, pose, etc.
• However, unless these images are annotated, these factors of variation are not explicitly

available (latent).

Idea: Explicitly model these factors using latent variables z

32 Latent Variable Models: Definition
An latent-variable model is a probability distribution

Pθ(x, z) : X × Z → [0, 1]

containing two sets of variables: * Observed x that represent the high-dimensional object we are
trying to model. * Latent z that are not in the training set, but can encode hidden structure in
the data.

This model defines a Pθ(x) =
∑

z∈Z Pθ(x, z) that can approximate the data distribution Pdata(x).

33 Latent Variable Models: Example
Consider the following example of latent variables

Only shaded variables x are observed in the data (pixel values). Latent variables z correspond to
high level features * If z is chosen properly, Pr(x|z) is much simpler than Pr(x) * We can identify
features via Pr(z | x), e.g., Pr(eye color = blue|x)

34 Mixtures of Gaussians
A mixture of Gaussians is a probability distribution P (x, z) that factorizes into two components:

• Pθ(z) is a categorical distribution, and Pθ(z = k) = ϕk.
• Pθ(x | z = k) is a multivariate Gaussian N (x;µk,Σk) with mean and covariance µk,Σk.

Thus, Pθ(x, z) is a mixture of K Gaussians:

Pθ(x, z) =

K∑
k=1

Pθ(z = k)Pθ(x|z = k) =

K∑
k=1

ϕkN (x;µk,Σk)

14

https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Mixtures of Gaussians fit more complex distributions than one Gaussian.

Raw data Single Gaussian Mixture of Gaussians

35 Representational Power of LVMs
An important reason for using LVMs is that they are more expressive models.

36 Feature Representations from LVMs
Given Pθ(x, z) we can compute Pθ(z|x) to find useful latent representations.

Latent variables are also useful to identify clusters in the data.

37 Learning Latent Variable Models
We can learn latent variable models using maximum likelihood:∑

x∈D
logPr(x; θ) =

∑
x∈D

log
∑
z∈Z

Pr(x, z; θ)

However, optimizing this objective is almost always intractable. * Consider a latent variable z ∈
{0, 1}30, of thirty binary dimensions. * We need to sum over 230 ≈ 1B possible values that z can
take. * For continuous variables we may need to solve an intractable integral

∫
P (x, z)dz.

38 Approximate Inference in LVMs
In practice, we need to compute the likelihood objective (and its gradients) approximately. * This is
called approximate inference. We will see examples soon. * The alternating algorithm for K-Means
was a first simple example.

39 Summary of LVMs
Latent-variable models are an important class of machine learning models. * They can represent
complex probability distributions * They can find unsupervised feature representations

They also have drawbacks: * Learning these models is computationally intractable and requires
approximate algorithms * Computing P (z|x) to obtain latent features is also often intractable.

15

	Lecture 17: Density Estimation
	Applied Machine Learning

	Part 1: Unsupervised Probabilistic Models
	Review: Unsupervised Learning
	Components of an Unsupervised Learning Problem
	Review: Data Distribution
	Review: Unsupervised Models
	Unsupervised Probabilistic Models
	Why Use Probabilistic Models?
	Kullback-Leibler Divergence
	Learning Models Using KL Divergence
	From KL Divergence to Log Likelihood
	Maximum Likelihood Estimation
	Example: Flipping a Random Coin
	Review: Data Distribution
	Review: Unsupervised Probabilistic Models
	Density Estimation
	Histogram Density Estimation
	Limitations of Histograms
	Kernel Density Estimation: Idea
	Tophat Kernel Density Estimation
	Review: Kernels
	Kernel Density Estimation
	Types of Kernels
	Kernel Density Estimation: Example
	KDE in Higher Dimensions
	Choosing Hyperparameters
	Algorithm: Kernel Density Estimation
	Pros and Cons of KDE
	Review: Probabilistic Models
	Review: Maximum Likelihood
	Latent Variable Models: Motivation
	Latent Variable Models: Definition
	Latent Variable Models: Example
	Mixtures of Gaussians
	Representational Power of LVMs
	Feature Representations from LVMs
	Learning Latent Variable Models
	Approximate Inference in LVMs
	Summary of LVMs

