
lecture15-deep-learning

March 11, 2022

1 Lecture 15: Deep Learning
1.0.1 Applied Machine Learning

Volodymyr Kuleshov, Jin SunCornell Tech

2 Part 1: What is Deep Learning?
Deep learning is a relatively new and powerful subfield of machine learning closely tied to neural
networks.

Let’s find out what deep learning is, and then we will see some deep learning algorithms.

3 Review: Neural Network Layers
A neural network layer is a model f : Rd → Rp that applies p neurons in parallel to an input x.

f(x) = σ(W · x) =


σ(w⊤

1 x)
σ(w⊤

2 x)
...

σ(w⊤
p x)

 ,

where each wk is the vector of weights for the k-th neuron and Wkj = (wk)j . We refer to p as the
size of the layer.

4 Review: Neural Networks
A neural network is a model f : R → R that consists of a composition of L neural network layers:

f(x) = fL ◦ fL−1 ◦ . . . f1(x).

The final layer fL has size one (assuming the neural net has one ouput); intermediary layers fl can
have any number of neurons.

The notation f ◦ g(x) denotes the composition f(g(x)) of functions

We can visualize this graphically as follows.

1

5 What is Deep Learning?
In a nutshell, deep learning is a modern evolution of the field of artificial neural networks that
emphasizes: * Very deep neural networks * Large unstructured datasets, especially images, text,
and audio * Modern computational resources, like GPUs

6 Expressivity of Deep Models
Why is deep learning powerful? One reason is deep neural networks can represent complex models
very compactly. * Shallow neural networks can represent any function, but need very large hidden
layers. * Deep networks can represent very complex X → Y mappings with fewer parameters.

In practice, deep neural networks can learn very complex mappings such as image →
text description that other algorithms cannot.

7 Representation Learning
How does a deep neural network use its representational power? * The sequential layers can learn
to represent data at an increasing level of abstraction * This can also be interpreted as learning:
each layer maps input to a more abstract feature space that is learned from data.

This is an example of representations that a deep neural network learns from data.

8 Scaling to Large Datasets
Deep learning models also scale to very large datasets.

Classical algorithms like linear regression saturate after a certain dataset size. Deep learning models
keep improving as we add more data.

9 Computational Scalability
Deep learning datasets benefit from large datasets because they can easily use specialzied compu-
tational hardware. * Neural networks mostly implement linear algebra, and benefit from hardware
acceleration. * Today, they are trained on graphical processing units (GPUs), or even more spe-
cialzied hardware, resulting in order of magnitude speedups.

10 Connections to Neuroscience
As artificial neurons are designed to mimic the biological ones, deep neural networks have strong
connections with biological neural systems.

One of the most interesting ones is the visual processing network in brains.

There is ample evidence that deep neural networks perform computation very simiilar to that of
the visual cortex (Kravitz el al.).

2

https://plos.figshare.com/articles/_Hierarchical_representations_along_the_ventral_visual_pathway_/811315

11 Successes of Deep Learning
Deep learning has been a real breakthrough in machine learning over the last decade. * It has
dramatically improved common technologies like speech recognition or machine translation. * It
has enabled new results that have captured the popular imagination.

One really recent impressive application is image generation.

These faces are not real! See: https://thispersondoesnotexist.com/

12 Pros and Cons of Deep Neural Networks
Deep neural nets (DNNs) are among the most powerful ML models. * DNNs set a new state-
of-the-art in many application areas. * They can be combined with many algorithms (supervised,
unsupervised), and significantly improve them. * Many specialized software and hardware platforms
for DNNs.

However, DNNs also can be slow and hard to train and require a lot of data.

• OpenAI GPT-2/3 is a language model that uses deep learning to generate text, as if they
were written by human.

Try it out! https://transformer.huggingface.co/doc/gpt2-large

GPT-3 is more powerful and able to generate structured text such as HTML/CSS, tables, Python
programs, food recipes and much more.

https://github.com/elyase/awesome-gpt3

13 Challenges of Deep Learning
Deep learning is powerful, but it can be challenging to apply it to real-world problems.

• Training with deep networks faces the vanishing gradients problem.

Possible solutions will be to use normalization (BatchNorm and variants), skip connections
(ResNet), etc.

• Deep neural networks are prone to overfitting.

We need proper regularization, data augmentation, and close monitoring of the training
process.

• Requires a massive amount of data

Training from scratch with limited data is difficult. Consider transfer learning from pre-
trained models.

Next we are going to look into a particular type of deep neural networks that is widely used for
static data such as images: Convolutional Neural Networks (CNN).

But first we need to review the foundational operations of CNNs: Convolutions and Pooling.

Part 2: Convolutions and Pooling

These basic operations are the building blocks of modern convolutional neural networks.

3

14 Review: What is Deep Learning?
In a nutshell, deep learning is a modern evolution of the field of artificial neural networks that
emphasizes: * Very deep neural networks * Large unstructured datasets, especially images, text,
and audio * Modern computational resources, like GPUs

15 Definition of Convolution
Let f ∈ Rn and g ∈ Rm be two vectors, called the filter and the signal respectively. Typically,
n < m.

In deep learning, a convolution (f ∗ g) : Z → R is typically defined as

(f ∗ g)[p] ≜
n∑

t=1

f [t]g[p+ t]︸ ︷︷ ︸
dot product of f with part of g

(1)

where g[t] = 0 when t ≤ 0 or t > m.

• We may think of the convolution
n∑

t=1

f [t]g[p+ t]

as a “local” dot product of f with g[p:p+n] (the subsequence of g that starts at position p).

• (f ∗ g)[p] is large when f is similar to g at p and small otherwise. It measures the extent to
which f is “found” in g.

This is best understood via a picture:

The green sequence [1,0,-1] is the filter. The signal g is in gray, and the outputs of the convolution

(f ∗ g)[p] = 1 · gp + 0 · gp+1 − 1 · gp+2

are in yellow.

On a small technical note, what we have defined is called the cross-correlation in mathematics.

The convolution is technically defined as
∑n

t=1 f [t]g[p − t], but in deep learning both formulas
effectively give the same results and the cross-correlation is used in practice (and is called “convo-
lution”).

We can implement a convolution in Python as follows.

[1]: # A naive (*slow*) implementation of convolution with loops, don't use this in␣
↪→practice!

def conv_naive(f, g):
M = len(f)
N = len(g)
result = [0]*N
for n in range(N):

for m in range(M):
if n-m>=0 and n-m<N:

4

result[n] += f[m]*g[n-m]
return result[M-1:] #only return valid results

numpy also provides convolution function np.convolve(f,g,'valid')

16 Example: Edge Detection
To gain more intuition about convolution, let’s look at another example in 1D.

We start by defining a filter and a signal as numpy arrays.

[11]: import numpy as np

create filter
f = np.array([-1.,1.])

create signal
g = np.ones(30)
g[5:8] = 0
g[15:18] = 0

create convolution
conv_result = conv_naive(f,g)

Here, the signal has “jumps” or “edges” between 0 and 1 at a few locations.

The filter equals ±1 at these edges, and zero everywhere else. If g was an audio signal, then f
would detect boundaries between silence.

[20]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [8, 4]

ax1 = plt.subplot(221)
ax1.stem(range(len(f)), f, use_line_collection=True)
ax1.set_title('Filter f')
ax1.set_xticks([0,1])
ax2 = plt.subplot(222)
ax2.stem(range(len(g)), g, use_line_collection=True)
ax2.set_title('Signal g')
ax3 = plt.subplot(212)
ax3.stem(range(len(conv_result)), conv_result, use_line_collection=True)
ax3.set_title('Convolution f * g', y=-0.5)

plt.show()

5

17 Example: Smoothing
Another application of convolutions is to smooth the signal g.

We again define a filter and a signal as numpy arrays.

[21]: # create signal
g = np.ones(30)
g[5:8] = 0
g[15:18] = 0

create filter
f = np.sin(np.linspace(0.1,np.pi,10))
f /= f.sum()

create convolution
conv_result = conv_naive(f,g)

The filter f is a “mini bell curve”. When applied to the same signal, it smoothes-out the “kinks”.

[22]: ax1 = plt.subplot(221)
ax1.stem(range(len(f)), f, use_line_collection=True)
ax1.set_title('f')
ax2 = plt.subplot(222)
ax2.stem(range(len(g)), g, use_line_collection=True)
ax2.set_title('g')

6

ax3 = plt.subplot(212)
ax3.stem(range(len(conv_result)), conv_result, use_line_collection=True)
ax3.set_title('f * g', y=-0.5)

plt.show()

18 What Are Convolutions Doing?
The convolution applies the filter f onto the signal g. * This can change the behavior of g (e.g.,
smoothing it out). * Or it can extract useful characteristics from g (e.g., edge detection, or when
does the signal changes drastically).

We can use convolutions in machine learning models to learn the filters.

19 Convolutions in 2D
Convolutions can be extended to 2D by expanding dimensions of f and g.

In this example, f is a 3x3 array (gray area). g is a 5x5 array (blue area). The result of the
convolution is the top green area.

In the context of neural networks, f are learnable weights, g are inputs from previous layers. * The
signal g can be an image. * The filter f can be a “feature” of the image, like an edge or a more
complex object.

The results of applying the convolution are fed to the next layer.

7

20 Review: Neural Network Layers
A neural network layer is a model f : Rd → Rp that applies p neurons ih parallel to an input x.

f(x) = σ(W · x) =


σ(w⊤

1 x)
σ(w⊤

2 x)
...

σ(w⊤
p x)

 ,

where each wk is the vector of weights for the k-th neuron and Wkj = (wk)j . We refer to p as the
size of the layer.

21 Convolutional Layers
A convolution layer is a model f : Rd → Rp that applies p convolutions in parallel to an input x.

f(x) = conv(W,x) =


conv(w1, x)
conv(w2, x)

...
conv(wp, x)

 ,

where each wk is the weights for the k-th convolution filter (think f in our 1D example).

22 Understanding 2D Convolutional Layers
Each convolution filter in the conv layer produces an output map called the activation map.

A different filter produces a different activation map.

Each filter produces its own activation map.

All activation maps in the same conv layer are concatenated together to form the final multi channel
output:

The activation map contains useful information about the input image.

23 Attributes of Convolutional Layers
The most important attributes of a convolutional layer are: * # input channels: the number of
feature maps from input. * # output channels: the number of feature maps for output, this is
also the number of convolutional filters in this layer. * kernel_size: size of the convolution filters.

24 Example: Edge Detection in 2D
Let’s revisit our edge detection example, but this time the signal g will be a 2D image.

We will use two filters, each of which is defined below. We will also load an image as the signal g.

[25]: from scipy import misc

8

define the filters
sobel_x = np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
sobel_y = np.array([[1,2,1],[0,0,0],[-1,-2,-1]])

load and visualize the "signal"
img = misc.ascent()
plt.imshow(img, cmap='gray')

[25]: <matplotlib.image.AxesImage at 0x1222c62b0>

We can now convolve and visualize the filters with the image.

The result is an activation map with high activation around horizontal and vertical edges – parts
of the image where it changes from light to dark.

[26]: from scipy import signal

create the convolution with each filter
grad_x = signal.convolve2d(img, sobel_x, boundary='symm', mode='same')
grad_y = signal.convolve2d(img, sobel_y, boundary='symm', mode='same')

visualize the convolution
fig, (ax_orig, ax_x, ax_y) = plt.subplots(1, 3, figsize=(15, 15))
ax_orig.imshow(img, cmap='gray')
ax_orig.set_title('Original')
ax_orig.set_axis_off()

9

ax_x.imshow(np.absolute(grad_x), cmap='gray')
ax_x.set_title('Vertical Edges')
ax_x.set_axis_off()
ax_y.imshow(np.absolute(grad_y), cmap='gray')
ax_y.set_title('Horizontal Edges')
ax_y.set_axis_off()

25 When to Use Convolutions?
Convolutions work best on inputs containing “attributes” that are interesting, but whose location
in the input is not important.

Images are by nature good examples of this assumption. Convolution layers can learn similar
functions as fully connected layers, but with much smaller parameters.

26 Pooling Layers
A pooling layer is a model f : Rd → Rp that applies pooling operations to an input x.

f(x) = pooling(x)

where pooling is a pre-defined operation applied over the input x.

Pooling layer does not have learnable weights.

27 Pooling
Pooling is a common operation to be added after a convolution layer. It is applied to each activation
map separately and reduces the spatial size of its input.

Max Pooling: for each region in the input, return the max value. This is the most common type.

Average Pooling: for each region in the input, return the average value.

10

27.1 Purpose of Pooling
• Allows slight translation invariance inside the pooling window: exact location of the relevant

feature is not critical. This improves robustness of feature detection.

• When used together with convolutions, pooling reduces spatial size of feature maps to capture
more abstract representations.

Part 3: Convolutional Neural Networks

Convolutional neural networks use convolutional layers to process signals such as images, audio,
and even text.

28 Review: Convolution
Convolutions apply a filter f (gray) over a signal g (blue). The output is an activation map (green).

29 Review: Pooling
Pooling is a common operation to be added after a convolution layer. It is applied to each activation
map separately and reduces the spatial size of its input.

30 Convolutional Neural Networks
A convolutional neural network (CNN) is a model f : R → R that consists of a composition of L
neural network layers that contain convolutions:

f(x) = fL ◦ fL−1 ◦ . . . f1(x).

The final fL is often a fully connected output later of size one.

Typically, CNNs are made of consecutive convolution + activation + pooling layers that form into
blocks.

Next we are going to see a few famous examples.

31 LeNet for MNIST Digits Recognition
LeNet successfully used CNNs for digit recognition [LeCun, Bottou, Bengio, Haffner 1998].

• LeNet contains multiple convolutional and max-pooling (called subsampling in the original
paper) layers and a fully connected MLP in the end.

• Given an image of a hand-written digit, LeNet predicts it to be one of the 10 classes (0-9).
• This work inspired many subsequent CNN architectures.

32 AlexNet and ImageNet
ImageNet classification with deep convolutional neural networks [Krizhevsky, Sutskever, Hinton
2012]

11

• AlexNet contains multiple convolutional layers followed by max pooling. The prediction is
1000 dimentional because that is the number of classes in the ImageNet classification task.

• Note that in the original implementation the image is separated into two parts that are in
two different GPUs due to hardware limits.

Starting from AlexNet, the performance of image classification on ImageNet has entered a new era:

http://sqlml.azurewebsites.net/2017/09/12/convolutional-neural-network/

Convolutional neural networks with deeper layers (and other tricks) have already exceeded human
performance on such tasks.

33 Algorithm: Convolutional Neural Network
• Type: Supervised learning (regression and classification).
• Model family: Compositions of convolutional, pooling and other types of layers.
• Objective function: Any differentiable objective.
• Optimizer: Gradient descent.

34 CNNs and Feature Learning
Before neural networks, computer vision algorithms used hand-crafted features to extract informa-
tion from raw image inputs.

Designing such features is hard and most importantly they might not be optimal for a particular
task.

One set of features that used to be popular was the Scale-Invariant Feature Transform (SIFT).

https://www.vlfeat.org/overview/sift.html

Another common set of features was the the Histogram of Oriented Gradients (HOG).

https://sarthakahuja.org/public/docs/report_ped_detection.pdf

By using CNNs, we now can extract features from input images at different level of abstraction,
without the need of designing hand-craft features.

35 Visualizing CNN Internals
CNNs can be seen as extracting features at low-, mid-, and high-levels of abstraction that are
relevant to corresponding visual concepts.

Below, we reproduce feature visualization from the paper Visualizing and Understanding Convolu-
tional Networks [Zeiler, Fergus 2013].

For a convolutional network with

Input → Conv Layer1 → Conv Layer2 → · · · → Conv Layer5 → · · · → Output,

12

we can visualize what each layer is doing by finding the image patch with highest activation re-
sponses.

Layer 1 focuses on colored edges and blobs.

Layers 2-3 focus on object parts, such as the wheels of a car, or the beak of a bird.

Layers 4-5 focus on object parts and even entire objects.

36 Pros and Cons of CNNs:
CNNs are powerful tools because they encode visual information efficiently. * CNNs are now used
as universal visual feature extractors. It is common to use ImageNet pretrained CNNs. * They
serve as building blocks in ML pipelines and can work with other types of networks such as a
recurrent network for complex tasks.

Their main drawbacks are computational and data requirements.

13

	Lecture 15: Deep Learning
	Applied Machine Learning

	Part 1: What is Deep Learning?
	Review: Neural Network Layers
	Review: Neural Networks
	What is Deep Learning?
	Expressivity of Deep Models
	Representation Learning
	Scaling to Large Datasets
	Computational Scalability
	Connections to Neuroscience
	Successes of Deep Learning
	Pros and Cons of Deep Neural Networks
	Challenges of Deep Learning
	Review: What is Deep Learning?
	Definition of Convolution
	Example: Edge Detection
	Example: Smoothing
	What Are Convolutions Doing?
	Convolutions in 2D
	Review: Neural Network Layers
	Convolutional Layers
	Understanding 2D Convolutional Layers
	Attributes of Convolutional Layers
	Example: Edge Detection in 2D
	When to Use Convolutions?
	Pooling Layers
	Pooling
	Purpose of Pooling

	Review: Convolution
	Review: Pooling
	Convolutional Neural Networks
	LeNet for MNIST Digits Recognition
	AlexNet and ImageNet
	Algorithm: Convolutional Neural Network
	CNNs and Feature Learning
	Visualizing CNN Internals
	Pros and Cons of CNNs:

