
lecture13-boosting

March 11, 2022

1 Lecture 13: Boosting
1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Boosting and Ensembling
We are now going to look at ways in which multiple machine learning can be combined.

In particular, we will look at a way of combining models called boosting.

3 Review: Components of A Supervised Machine Learning Prob-
lem

At a high level, a supervised machine learning problem has the following structure:

Training Dataset︸ ︷︷ ︸
Attributes + Features

+ Learning Algorithm︸ ︷︷ ︸
Model Class + Objective + Optimizer

→ Predictive Model

4 Review: Overfitting
Overfitting is one of the most common failure modes of machine learning. * A very expressive
model (a high degree polynomial) fits the training dataset perfectly. * The model also makes
wildly incorrect prediction outside this dataset, and doesn’t generalize.

5 Review: Bagging
The idea of bagging is to reduce overfitting by averaging many models trained on random subsets
of the data.

for i in range(n_models):
collect data samples and fit models
X_i, y_i = sample_with_replacement(X, y, n_samples)
model = Model().fit(X_i, y_i)
ensemble.append(model)

1

output average prediction at test time:
y_test = ensemble.average_prediction(y_test)

The data samples are taken with replacement and known as bootstrap samples.

6 Review: Underfitting
Underfitting is another common problem in machine learning. * The model is too simple to fit the
data well (e.g., approximating a high degree polynomial with linear regression). * As a result, the
model is not accurate on training data and is not accurate on new data.

7 Boosting
The idea of boosting is to reduce underfitting by combining models that correct each others’ errors.

• As in bagging, we combine many models gt into one ensemble f .

• Unlike bagging, the gt are small and tend to underfit.

• Each gt fits the points where the previous models made errors.

8 Weak Learners
A key ingredient of a boosting algorithm is a weak learner.

• Intuitively, this is a model that is slightly better than random.
• Examples of weak learners include: small linear models, small decision trees.

9 Structure of a Boosting Algorithm
The idea of boosting is to reduce underfitting by combining models that correct each others’ errors.

1. Fit a weak learner g0 on dataset D = {(x(i), y(i))}. Let f = g.

2. Compute weights w(i) for each i based on model predictions f(x(i)) and targets y(i). Give
more weight to points with errors.

3. Fit another weak learner g1 on D = {(x(i), y(i))} with weights w(i).

4. Set f1 = g0 + α1g for some weight α1. Go to Step 2 and repeat.

In Python-like pseudocode this looks as follows:

weights = np.ones(n_data,)
for i in range(n_models):

model = SimpleBaseModel().fit(X, y, weights)
predictions = model.predict(X)
weights = update_weights(weights, predictions)
ensemble.add(model)

output consensus prediction at test time:
y_test = ensemble.consensus_prediction(y_test)

2

10 Origins of Boosting
Boosting algorithms were initially developed in the 90s within theoretical machine learning.

• Originally, boosting addressed a theoretical question of whether weak learners with >50%
accuracy can be combined to form a strong learner.

• Eventually, this research led to a practical algorithm called Adaboost.

Today, there exist many algorithms that are considered types of boosting, even though they were
not derived from a theoretical angle.

11 Algorithm: Adaboost
• Type: Supervised learning (classification).
• Model family: Ensembles of weak learners (often decision trees).
• Objective function: Exponential loss.
• Optimizer: Forward stagewise additive model building.

12 Defining Adaboost
One of the first practical boosting algorithms was Adaboost.

We start with uniform w(i) = 1/n and f = 0. Then for t = 1, 2, ..., T :

1. Fit weak learner gt on D with weights w(i).

2. Compute misclassification error et =
∑n

i=1 w
(i)I{y(i) ̸=f(x(i))}∑n

i=1 w
(i)

3. Compute model weight αt = log[(1− et)/et]. Set f ← f + αtgt.

4. Compute new data weights w(i) ← w(i) exp[αtI{y(i) ̸= f(x(i))}].

13 Adaboost: An Example
Let’s implement Adaboost on a simple dataset to see what it can do.

Let’s start by creating a classification dataset.

[1]: # https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.
↪→html

import numpy as np
from sklearn.datasets import make_gaussian_quantiles

Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2,␣
↪→n_classes=2, random_state=1)

X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300,␣
↪→n_features=2, n_classes=2, random_state=1)

X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))

3

We can visualize this dataset using matplotlib.

[15]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]

Plot the training points
plot_colors, plot_step, class_names = "br", 0.02, "AB"
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

for i, n, c in zip(range(2), class_names, plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], cmap=plt.cm.Paired, s=60, edgecolor='k',␣

↪→label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')

[15]: <matplotlib.legend.Legend at 0x12afda198>

Let’s now train Adaboost on this dataset.

[12]: from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),

algorithm="SAMME",
n_estimators=200)

bdt.fit(X, y)

[12]: AdaBoostClassifier(algorithm='SAMME',
base_estimator=DecisionTreeClassifier(max_depth=1),
n_estimators=200)

4

Visualizing the output of the algorithm, we see that it can learn a highly non-linear decision
boundary to separate the two classes.

[14]: xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min,␣
↪→y_max, plot_step))

plot decision boundary
Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)

plot training points
for i, n, c in zip(range(2), class_names, plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], cmap=plt.cm.Paired, s=60, edgecolor='k',␣

↪→label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')

[14]: <matplotlib.legend.Legend at 0x12b3b8438>

14 Ensembling
Boosting and bagging are special cases of ensembling.

The idea of ensembling is to combine many models into one. Bagging and Boosting are ensembling
techniques to reduce over- and under-fitting.

• In stacking, we train m independent models gj(x) (possibly from different model classes) and
then train another model f(x) to prodict y from the outputs of the gj .

5

• The Bayesian approach can also be seen as form of ensembling

P (y | x) =
∫
θ
P (y | x, θ)P (θ | D)dθ

where we average models P (y | x, θ) using weights P (θ | D).

15 Pros and Cons of Ensembling
Ensembling is a useful tecnique in machine learning. * It often helps squeeze out additional per-
formance out of ML algorithms. * Many algorithms (like Adaboost) are forms of ensembling.

Disadvantages include: * It can be computationally expensive to train and use ensembles.

Part 2: Additive Models

Next, we are going to see another perspective on boosting and derive new boosting algorithms.

16 The Components of A Supervised Machine Learning Algorithm
We can define the high-level structure of a supervised learning algorithm as consisting of three
components: * A model class: the set of possible models we consider. * An objective function,
which defines how good a model is. * An optimizer, which finds the best predictive model in the
model class according to the objective function

17 Review: Underfitting
Underfitting is another common problem in machine learning. * The model is too simple to fit the
data well (e.g., approximating a high degree polynomial with linear regression). * As a result, the
model is not accurate on training data and is not accurate on new data.

18 Review: Boosting
The idea of boosting is to reduce underfitting by combining models that correct each others’ errors.

• As in bagging, we combine many models gi into one ensemble f .

• Unlike bagging, the gi are small and tend to underfit.

• Each gi fits the points where the previous models made errors.

19 Additive Models
Boosting can be seen as a way of fitting an additive model:

f(x) =
T∑
t=1

αtg(x;ϕt).

• The main model f(x) consists of T smaller models g with weights αt and paramaters ϕt.

• The parameters are the αt plus the parameters ϕt of each g.

This is more general than a linear model, because g can be non-linear in ϕt (therefore so is f).

6

20 Example: Boosting Algorithms
Boosting is one way of training additive models.

1. Fit a weak learner g0 on dataset D = {(x(i), y(i))}. Let f = g.

2. Compute weights w(i) for each i based on model predictions f(x(i)) and targets y(i). Give
more weight to points with errors.

3. Fit another weak learner g1 on D = {(x(i), y(i))} with weights w(i).

4. Set f1 = g0 + α1g for some weight α1. Go to Step 2 and repeat.

21 Forward Stagewise Additive Modeling
A general way to fit additive models is the forward stagewise approach.

• Suppose we have a loss L : Y × Y → [0,∞).

• Start with f0 = argminϕ
∑n

i=1 L(y
(i), g(x(i);ϕ)).

• At each iteration t we fit the best addition to the current model.

αt, ϕt = argmin
α,ϕ

n∑
i=1

L(y(i), ft−1(x
(i)) + αg(x(i);ϕ))

22 Practical Considerations
• Popular choices of g include cubic splines, decision trees and kernelized models.
• We may use a fix number of iterations T or early stopping when the error on a hold-out set

no longer improves.
• An important design choice is the loss L.

23 Exponential Loss
Give a binary classification problem with labels Y = {−1,+1}, the exponential loss is defined as

L(y, f) = exp(−y · f).

• When y = 1, L is small when f →∞.
• When y = −1, L is small when f → −∞.

Let’s visualize the exponential loss and compare it to other losses.

[23]: from matplotlib import pyplot as plt
import numpy as np
plt.rcParams['figure.figsize'] = [12, 4]

define the losses for a target of y=1
losses = {

'Hinge' : lambda f: np.maximum(1 - f, 0),

7

'L2': lambda f: (1-f)**2,
'L1': lambda f: np.abs(f-1),
'Exponential': lambda f: np.exp(-f)

}

plot them
f = np.linspace(0, 2)
fig, axes = plt.subplots(2,2)
for ax, (name, loss) in zip(axes.flatten(), losses.items()):

ax.plot(f, loss(f))
ax.set_title('%s Loss' % name)
ax.set_xlabel('Prediction f')
ax.set_ylabel('L(y=1,f)')

plt.tight_layout()

24 Special Case: Adaboost
Adaboost is an instance of forward stagewise additive modeling with the expoential loss.

At each step t we minimize

Lt =
n∑

i=1

e−y(i)(ft−1(x(i))+αg(x(i);ϕ)) =
n∑

i=1

w(i) exp
(
−y(i)αg(x(i);ϕ)

)
with w(i) = exp(−y(i)ft−1(x

(i))).

We can derive the Adaboost update rules from this equation.

Suppose that g(y;ϕ) ∈ {−1, 1}. With a bit of algebraic manipulations, we get that:

Lt = eα
∑

y(i) ̸=g(x(i))

w(i) + e−α
∑

y(i)=g(x(i))

w(i)

= (eα − e−α)

n∑
i=1

w(i)I{y(i) ̸= g(x(i))}+ e−α
n∑

i=1

w(i).

8

where I{·} is the indicator function.

From there, we get that:

ϕt = argmin
ϕ

n∑
i=1

w(i)I{y(i) ̸= g(x(i);ϕ)}

αt = log[(1− et)/et]

where et =
∑n

i=1 w
(i)I{y(i) ̸=f(x(i))}∑n

i=1 w
(i)} .

These are update rules for Adaboost, and it’s not hard to show that the update rule for w(i) is the
same as well.

25 Squared Loss
Another popular choice of loss is the squared loss.

L(y, f) = (y − f)2.

The resulting algorithm is often called L2Boost. At step t we minimize
n∑

i=1

(r
(i)
t − g(x(i);ϕ))2,

where r
(i)
t = y(i) − f(x(i))t−1 is the residual from the model at time t− 1.

26 Logistic Loss
Another common loss is the log-loss. When Y = {−1, 1} it is defined as:

L(y, f) = log(1 + exp(−2 · y · f)).

This looks like the log of the exponential loss; it is less sensitive to outliers since it doesn’t penalize
large errors as much.

[25]: from matplotlib import pyplot as plt
import numpy as np
plt.rcParams['figure.figsize'] = [12, 4]

define the losses for a target of y=1
losses = {

'Hinge' : lambda f: np.maximum(1 - f, 0),
'L2': lambda f: (1-f)**2,
'Logistic': lambda f: np.log(1+np.exp(-2*f)),
'Exponential': lambda f: np.exp(-f)

}

9

plot them
f = np.linspace(0, 2)
fig, axes = plt.subplots(2,2)
for ax, (name, loss) in zip(axes.flatten(), losses.items()):

ax.plot(f, loss(f))
ax.set_title('%s Loss' % name)
ax.set_xlabel('Prediction f')
ax.set_ylabel('L(y=1,f)')
ax.set_ylim([0,1])

plt.tight_layout()

In the context of boosting, we minimize

J(α, ϕ) =
n∑

i=1

log
(
1 + exp

(
−2y(i)(ft−1(x

(i)) + αg(x(i);ϕ)
))

.

This give a different weight update compared to Adabost. This algorithm is called LogitBoost.

27 Pros and Cons of Boosting
The boosting algorithms we have seen so far improve over Adaboost. * They optimize a wide range
of objectives. * Thus, they are more robust to outliers and extend beyond classification.

Cons: * Computational time is still an issue. * Optimizing greedily over each ϕt can take time. *
Each loss requires specialized derivations.

28 Summary
• Additive models have the form

f(x) =
T∑
t=1

αtg(x;ϕt).

• These models can be fit using the forward stagewise additive approach.
• This reproduces Adaboost and can be used to derive new boosting-type algorithms.

10

Part 3: Gradient Boosting

We are now going to see another way of deriving boosting algorithms that is inspired by gradient
descent.

29 Review: Boosting
The idea of boosting is to reduce underfitting by combining models that correct each others’ errors.

• As in bagging, we combine many models gi into one ensemble f .

• Unlike bagging, the gi are small and tend to underfit.

• Each gi fits the points where the previous models made errors.

30 Review: Additive Models
Boosting can be seen as a way of fitting an additive model:

f(x) =

T∑
t=1

αtg(x;ϕt).

• The main model f(x) consists of T smaller models g with weights αt and paramaters ϕt.

• The parameters are the αt plus the parameters ϕt of each g.

This is not a linear model, because g can be non-linear in ϕt (therefore so is f).

31 Review: Forward Stagewise Additive Modeling
A general way to fit additive models is the forward stagewise approach.

• Suppose we have a loss L : Y × Y → [0,∞).

• Start with f0 = argminϕ
∑n

i=1 L(y
(i), g(x(i);ϕ)).

• At each iteration t we fit the best addition to the current model.

αt, ϕt = argmin
α,ϕ

n∑
i=1

L(y(i), ft−1(x
(i)) + αg(x(i);ϕ))

32 Losses for Additive Models
We have seen several losses that can be used with the forward stagewise additive approach. * The
exponential loss L(y, f) = exp(−yf) gives us Adaboost. * The log-loss L(y, f) = log(1+exp(−2yf))
is more robust to outliers. * The squared loss L(y, f) = (y − f)2 can be used for regression.

33 Limitations of Forward Stagewise Additive Modeling
Forward stagewise additive modeling is not without limitations. * There may exist other losses for
which it is complex to derive boosting-type weight update rules. * At each step, we may need to
solve a costly optimization problem over ϕt. * Optimizing each ϕt greedily may cause us to overfit.

11

34 Functional Optimization
Functional optimization offers a different angle on boosting algorithms and a recipe for new algo-
rithms.

• Consider optimizing a loss over arbitrary functions f : X → Y .

• Functional optimization consists in solving the problem

min
f

n∑
i=1

L(y(i), f(x(i))).

over the space of all possible f .

• It’s easiest to think about f as an infinite dimensional vector indexed by x ∈ X .

To simplify our explanations, we will assume that there exists a true deterministic mapping

f∗ : X → Y

between X and Y, but the algorithm shown here works perfectly without this assumption.

35 Functional Gradients
Consider solving the optimization problem using gradient descent:

J(f) = min
f

n∑
i=1

L(y(i), f(x(i))).

We may define the functional gradient of this loss at f0 as a function ∇J(f0) : X → R

∇J(f0)(x) =
∂L(y, f)

∂f

∣∣∣∣
f=f0(x),y=f∗(x)

.

Let’s make a few observations about the functional gradient

∇J(f0)(x) =
∂L(y, f)

∂f

∣∣∣∣
f=f0(x),y=f∗(x)

.

• It’s an object indexed by x ∈ X .

• At each x ∈ X , ∇J(f0)(x) tells us how to modify f0(x) to make L(f∗(x), f0(x)) smaller.

• This is consistent with the fact that we are optimizing over a “vector” f , also indexed by
x ∈ X .

This is best understood via a picture.

12

36 Functional Gradient Descent
We can optimize our objective using gradient descent in functional space via the usual update rule:

f ← f − α∇J(f).

As defined, this is not a practical algorithm: * Minimizing the objective is easy because it’s uncon-
strained. * The optimal f only fits the training data, and doesn’t generalize. * We only know J(f)
at n training points.

37 Modeling Functional Gradients
We will address this problem by learning a model of gradients.

• In supervised learning, we only have access to n data points that describe the true X → Y
mapping.

• We learn a model fθ : X → Y within a classM to approximate f∗.
• The model extrapolates beyond the training set. Given enough datapoints, fθ learns a true

mapping.

We will apply the same idea to gradients. * We assume a model gθ : X → R of the functional
gradient ∇J(f) within a classM.

g ∈M g ≈ ∇fJ(f)

* The model extrapolates beyond the training set. Given enough datapoints, gθ learns ∇J(f).

Functional descent then has the form:

f(x)︸︷︷︸
new function

← f(x)− αg(x)︸ ︷︷ ︸
old function - gradient step

.

If g generalizes, this approximates f ← f − α∇J(f).

38 Fitting Functional Gradients
What does it mean to approximate a functional gradient g ≈ ∇fJ(f) in practice? We can use
standard supervised learning.

Suppose we have a fixed function f and we want to estimate the functional gradient of L
∂L(y, f)

∂f

∣∣∣∣
f=f0(x),y=f∗(x)

.

at any x ∈ X$

1. We define a loss Lg (e.g., L2 loss) measure how well g ≈ ∇J(f).

2. We compute ∇fJ(f) on the training dataset:

Dg =



x(i),
∂L(y(i), f)

∂f

∣∣∣∣
f=f(x(i))︸ ︷︷ ︸

functional derivative ∇fJ(f)i at f(x(i))

 , i = 1, 2, . . . , n


13

3. We train a model g : X → R on Dg to predict functional gradients at any x:

g(x) ≈ ∂L(y, f)
∂f

∣∣∣∣
f=f0(x),y=f∗(x)

.

39 Gradient Boosting
Gradient boosting is a procedure that performs functional gradient descent with approximate gra-
dients.

Start with f(x) = 0. Then, at each step t > 1:

1. Create a training dataset Dg and fit gt(x(i)) using loss Lg:

gt(x) ≈
∂L(y, f)

∂f

∣∣∣∣
f=f0(x),y=f∗(x)

.

2. Take a step of gradient descent using approximate gradients:
ft(x) = ft−1(x)− α · gt(x).

40 Interpreting Gradient Boosting
Notice how after T steps we get an additive model of the form

f(x) =

T∑
t=1

αtgt(x).

This looks like the output of a boosting algorithm!

• This works for any differentiable loss L.
• It does not require any mathematical derivations for new L.

41 Boosting vs. Gradient Boosting
Consider, for example, L2Boost, which optimizes the L2 loss

L(y, f) =
1

2
(y − f)2.

At step t we minimize
n∑

i=1

(r
(i)
t − g(x(i);ϕ))2,

where r
(i)
t = y(i) − f(x(i))t−1 is the residual from the model at time t− 1.

Observe that the residual
r
(i)
t = y(i) − f(x(i))t−1

is also the gradient of the L2 loss with respect to f as f(x(i))

r
(i)
t =

∂L(y(i), f)
∂f

∣∣∣∣
f=f0(x)

Most boosting algorithms are special cases of gradient boosting in this way.

14

42 Losses for Gradient Boosting
Gradient boosting can optimize a wide range of losses.

1. Regression losses:
• L2, L1, and Huber (L1/L2 interpolation) losses.
• Quantile loss: estimates quantiles of distribution of p(y|x).

2. Classification losses:
• Log-loss, softmax loss, exponential loss, negative binomial likelihood, etc.

43 Practical Considerations
When using gradient boosting these additional facts are useful: * We most often use small decision
trees as the learner gt. Thus, input pre-processing is minimal. * We can regularize by controlling
tree size, step size α, and using early stopping. * We can scale-up gradient boosting to big data by
subsampling data at each iteration (a form of stochastic gradient descent).

44 Algorithm: Gradient Boosting
• Type: Supervised learning (classification and regression).
• Model family: Ensembles of weak learners (often decision trees).
• Objective function: Any differentiable loss function.
• Optimizer: Gradient descent in functional space. Weak learner uses its own optimizer.
• Probabilistic interpretation: None in general; certain losses may have one.

45 Gradient Boosting: An Example
Let’s now try running Gradient Boosted Decision Trees on a small regression dataset.

First we create the dataset.

[21]: # https://scikit-learn.org/stable/auto_examples/ensemble/
↪→plot_gradient_boosting_quantile.html

X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
X = X.astype(np.float32)

Create dataset
f = lambda x: x * np.sin(x)
y = f(X).ravel()
dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

Visualize it
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')

15

[21]: [<matplotlib.lines.Line2D at 0x12ed61898>]

Next, we train a GBDT regressor.

[19]: from sklearn.ensemble import GradientBoostingRegressor

alpha = 0.95
clf = GradientBoostingRegressor(loss='ls', alpha=alpha,

n_estimators=250, max_depth=3,
learning_rate=.1, min_samples_leaf=9,
min_samples_split=9)

clf.fit(X, y)

[19]: GradientBoostingRegressor(alpha=0.95, min_samples_leaf=9, min_samples_split=9,
n_estimators=250)

We may now visualize its predictions

[22]: y_pred = clf.predict(xx)
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y_pred, 'r-', label=u'Prediction')

[22]: [<matplotlib.lines.Line2D at 0x12c98e438>]

16

46 Pros and Cons of Gradient Boosting
Gradient boosted decision trees (GBTs) are one of the best off-the-shelf ML algorithms that exist,
often on par with deep learning. * Attain state-of-the-art performance. GBTs have won the most
Kaggle competitions. * Require little data pre-processing and tuning. * Work with any objective,
including probabilistic ones.

Their main limitations are: * GBTs don’t work with unstructured data like images, audio. *
Implementations not as flexible as modern neural net libraries.

[]:

[]:

[]:

[]:

[]:

[]:

[]:

47 Functional Optimization
Functional optimization offers a different angle on boosting algorithms and a recipe for new algo-
rithms.

• Consider optimizing a loss over arbitrary functions f : X → Y .

• Since we only have n datapoints, this reduces to optimizing over vectors f ∈ Rn

17

• Thus, functional optimization consists in solving the problem

min
f

n∑
i=1

L(y(i), fi).

48 Functional Gradients
Consider solving the optimization problem using gradient descent:

J(f) = min
f

n∑
i=1

L(y(i), fi).

We may define the functional gradient of this loss as

∇fJ(f) =


∂L(y(1),f1)

∂f1
∂L(y(2),f2)

∂f2...
∂L(y(n),fn)

∂fn

 .

49 Functional Gradient Descent
We can optimize our objective using gradient descent in functional space via the usual update rule:

f← f− α∇fJ(f).

As defined, this is not a practical algorithm: * Minimizing the objective is easy because it’s uncon-
strained. * The optimal f only fits the training data, and doesn’t generalize. * We want a way to
optimize J(f) at any n training points.

50 Modeling Functional Gradients
We will address this problem by learning a model of gradients.

In supervised learning, we define a model f : X → Y for f within a classM.

f ∈M f ≈ f

The model extrapolates beyond the training set and ensures we generalize.

We will apply the same idea to gradients. We assume a model g : X → R of the functional gradient
∇fJ(f) within a classM.

g ∈M g ≈ ∇fJ(f)

Our model of gradients can generalize beyond the training set.

Functional descent then has the form:

f(x)︸︷︷︸
new function

← f(x)− αg(x)︸ ︷︷ ︸
old function - gradient step

.

If g generalizes, this approximates f← f− α∇fJ(f) at any n points.

18

51 Fitting Functional Gradients
What does it mean to approximate a functional gradient g ≈ ∇fJ(f) in practice? We can use
standard supervised learning.

Suppose we have a fixed function f and we want to estimate the functional gradient of L

∂L(y, f)
∂f

∣∣∣∣
f=f(x)

at any value of f(x).

1. We define a loss Lg (e.g., L2 loss) measure how well g ≈ ∇fJ(f).

2. We compute ∇fJ(f) on the training dataset:

Dg =



x(i),
∂L(y, f)

∂f

∣∣∣∣
f=f(x(i))︸ ︷︷ ︸

functional derivative ∇fJ(f)i at f(x(i))

 , i = 1, 2, . . . , n


3. We train a model g : X → R on Dg to predict functional gradients at any x:

g(x) ≈ ∂L(y, f)
∂f

∣∣∣∣
f=f(x)

52 Gradient Boosting
Gradient boosting is a procedure that performs functional gradient descent with approximate gra-
dients.

Start with f(x) = 0. Then, at each step t > 1:

1. Create a training dataset Dg and fit gt(x(i)) using loss Lg:

gt(x) ≈
∂L(y, f)

∂f

∣∣∣∣
f=f(x)

.

2. Take a step of gradient descent using approximate gradients:

ft(x) = ft−1(x)− α · gt(x).

53 Interpreting Gradient Boosting
Notice how after T steps we get an additive model of the form

f(x) =
T∑
t=1

αtgt(x).

This looks like the output of a boosting algorithm!

• This works for any differentiable loss L.
• It does not require any mathematical derivations for new L.

19

54 Losses for Gradient Boosting
Gradient boosting can optimize a wide range of losses.

1. Regression losses:
• L2, L1, and Huber (L1/L2 interpolation) losses.
• Quantile loss: estimates quantiles of distribution of p(y|x).

2. Classification losses:
• Log-loss, softmax loss, exponential loss, negative binomial likelihood, etc.

55 Practical Considerations
When using gradient boosting these additional facts are useful: * We most often use small decision
trees as the learner gt. Thus, input pre-processing is minimal. * We can regularize by controlling
tree size, step size α, and using early stopping. * We can scale-up gradient boosting to big data by
subsampling data at each iteration (a form of stochastic gradient descent).

56 Algorithm: Gradient Boosting
• Type: Supervised learning (classification and regression).
• Model family: Ensembles of weak learners (often decision trees).
• Objective function: Any differentiable loss function.
• Optimizer: Gradient descent in functional space. Weak learner uses its own optimizer.
• Probabilistic interpretation: None in general; certain losses may have one.

57 Gradient Boosting: An Example
Let’s now try running Gradient Boosted Decision Trees on a small regression dataset.

First we create the dataset.

[21]: # https://scikit-learn.org/stable/auto_examples/ensemble/
↪→plot_gradient_boosting_quantile.html

X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
X = X.astype(np.float32)

Create dataset
f = lambda x: x * np.sin(x)
y = f(X).ravel()
dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

Visualize it
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')

20

[21]: [<matplotlib.lines.Line2D at 0x12ed61898>]

Next, we train a GBDT regressor.

[19]: from sklearn.ensemble import GradientBoostingRegressor

alpha = 0.95
clf = GradientBoostingRegressor(loss='ls', alpha=alpha,

n_estimators=250, max_depth=3,
learning_rate=.1, min_samples_leaf=9,
min_samples_split=9)

clf.fit(X, y)

[19]: GradientBoostingRegressor(alpha=0.95, min_samples_leaf=9, min_samples_split=9,
n_estimators=250)

We may now visualize its predictions

[22]: y_pred = clf.predict(xx)
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y_pred, 'r-', label=u'Prediction')

[22]: [<matplotlib.lines.Line2D at 0x12c98e438>]

21

58 Pros and Cons of Gradient Boosting
Gradient boosted decision trees (GBTs) are one of the best off-the-shelf ML algorithms that exist,
often on par with deep learning. * Attain state-of-the-art performance. GBTs have won the most
Kaggle competitions. * Require little data pre-processing and tuning. * Work with any objective,
including probabilistic ones.

Their main limitations are: * GBTs don’t work with unstructured data like images, audio. *
Implementations not as flexible as modern neural net libraries.

22

	Lecture 13: Boosting
	Applied Machine Learning

	Part 1: Boosting and Ensembling
	Review: Components of A Supervised Machine Learning Problem
	Review: Overfitting
	Review: Bagging
	Review: Underfitting
	Boosting
	Weak Learners
	Structure of a Boosting Algorithm
	Origins of Boosting
	Algorithm: Adaboost
	Defining Adaboost
	Adaboost: An Example
	Ensembling
	Pros and Cons of Ensembling
	The Components of A Supervised Machine Learning Algorithm
	Review: Underfitting
	Review: Boosting
	Additive Models
	Example: Boosting Algorithms
	Forward Stagewise Additive Modeling
	Practical Considerations
	Exponential Loss
	Special Case: Adaboost
	Squared Loss
	Logistic Loss
	Pros and Cons of Boosting
	Summary
	Review: Boosting
	Review: Additive Models
	Review: Forward Stagewise Additive Modeling
	Losses for Additive Models
	Limitations of Forward Stagewise Additive Modeling
	Functional Optimization
	Functional Gradients
	Functional Gradient Descent
	Modeling Functional Gradients
	Fitting Functional Gradients
	Gradient Boosting
	Interpreting Gradient Boosting
	Boosting vs. Gradient Boosting
	Losses for Gradient Boosting
	Practical Considerations
	Algorithm: Gradient Boosting
	Gradient Boosting: An Example
	Pros and Cons of Gradient Boosting
	Functional Optimization
	Functional Gradients
	Functional Gradient Descent
	Modeling Functional Gradients
	Fitting Functional Gradients
	Gradient Boosting
	Interpreting Gradient Boosting
	Losses for Gradient Boosting
	Practical Considerations
	Algorithm: Gradient Boosting
	Gradient Boosting: An Example
	Pros and Cons of Gradient Boosting

