In this lecture, we are going to cover Support Vector Machines (SVMs), one the most successful classification algorithms in machine learning.
We start the presentation of SVMs by defining the classification margin.
At a high level, a supervised machine learning problem has the following structure:
$$ \underbrace{\text{Training Dataset}}_\text{Attributes + Features} + \underbrace{\text{Learning Algorithm}}_\text{Model Class + Objective + Optimizer } \to \text{Predictive Model} $$A machine learning model is a function $$ f : \mathcal{X} \to \mathcal{Y} $$ that maps inputs $x \in \mathcal{X}$ to targets $y \in \mathcal{Y}$.
Consider a training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\}$.
We distinguish between two types of supervised learning problems depnding on the targets $y^{(i)}$.
In this lecture, we assume $\mathcal{Y} = \{-1, +1\}$.
In this lecture, we will work with linear models of the form: \begin{align*} f_\theta(x) & = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + ... + \theta_d \cdot x_d \end{align*} where $x \in \mathbb{R}^d$ is a vector of features and $y \in \{-1, 1\}$ is the target. The $\theta_j$ are the parameters of the model.
We can represent the model in a vectorized form \begin{align*} f_\theta(x) = \theta^\top x + \theta_0. \end{align*}
In this lecture, we are going to again use the Iris flower dataset.
As we just mentioned, we make two additional assumptions:
import numpy as np
import pandas as pd
from sklearn import datasets
# Load the Iris dataset
iris = datasets.load_iris(as_frame=True)
iris_X, iris_y = iris.data, iris.target
# subsample to a third of the data points
iris_X = iris_X.loc[::4]
iris_y = iris_y.loc[::4]
# create a binary classification dataset with labels +/- 1
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
iris_y2[iris_y2==0] = -1
# print part of the dataset
pd.concat([iris_X, iris_y2], axis=1).head()
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | -1 |
4 | 5.0 | 3.6 | 1.4 | 0.2 | -1 |
8 | 4.4 | 2.9 | 1.4 | 0.2 | -1 |
12 | 4.8 | 3.0 | 1.4 | 0.1 | -1 |
16 | 5.4 | 3.9 | 1.3 | 0.4 | -1 |
# https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
import warnings
warnings.filterwarnings("ignore")
# create 2d version of dataset and subsample it
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
# Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=60, cmap=plt.cm.Paired)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Not Setosa'], loc='lower right')
<matplotlib.legend.Legend at 0x12b01cd30>
We have seen different types approaches to classification.
When fitting a model, there may be many valid decision boundaries. How do we select one of them?
Consider the following three classification algorithms from sklearn
. Each of them outputs a different classification boundary.
from sklearn.linear_model import LogisticRegression, Perceptron, RidgeClassifier
models = [LogisticRegression(), Perceptron(), RidgeClassifier()]
def fit_and_create_boundary(model):
model.fit(X, iris_y2)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return Z
plt.figure(figsize=(12,3))
for i, model in enumerate(models):
plt.subplot('13%d' % (i+1))
Z = fit_and_create_boundary(model)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
plt.title('Algorithm %d' % (i+1))
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
Most classification algorithms output not just a class label but a score.
The score is an estimate of confidence; it also represents how far we are from the decision boundary.
Intuitively, we want to select boundaries with high margin.
This means that we are as confident as possible for every point and we are as far as possible from the decision boundary.
Several of the separating boundaries in our previous example had low margin: they came too close to the boundary.
from sklearn.linear_model import Perceptron, RidgeClassifier
from sklearn.svm import SVC
models = [SVC(kernel='linear', C=10000), Perceptron(), RidgeClassifier()]
def fit_and_create_boundary(model):
model.fit(X, iris_y2)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return Z
plt.figure(figsize=(12,3))
for i, model in enumerate(models):
plt.subplot('13%d' % (i+1))
Z = fit_and_create_boundary(model)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
if i == 0:
plt.title('Good Margin')
else:
plt.title('Bad Margin')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()
Below, we plot a decision boundary between the two classes (solid line) that has a high margin. The two dashed lines that lie at the margin.
Points that are the margin are highlighted in black. A good decision boundary is as far away as possible from the points at the margin.
#https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html
from sklearn import svm
# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000) # we'll explain this algorithm shortly
clf.fit(X, iris_y2)
plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
# plot decision boundary and margins
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6])
plt.ylim([2.25, 4])
(2.25, 4.0)
How can we define the concept of margin more formally?
We can try to define the margin $\tilde \gamma^{(i)}$ with respect to a training example $(x^{(i)}, y^{(i)})$ as $$ \tilde \gamma^{(i)} = y^{(i)} \cdot f(x^{(i)}) = y^{(i)} \cdot \left( \theta^\top x^{(i)} + \theta_0 \right). $$
We call this the functional margin. Let's analyze it.
We defined the functional margin as $$ \tilde\gamma^{(i)} = y^{(i)} \cdot \left( \theta^\top x^{(i)} + \theta_0 \right).$$
Thus higher margin means higher confidence at each input point.
However, we have a problem.
It doesn't make sense that the same classification boundary can have different margins when we rescale it.
We define the geometric margin $\gamma^{(i)}$ with respect to a training example $(x^{(i)}, y^{(i)})$ as $$ \gamma^{(i)} = y^{(i)}\left( \frac{\theta^\top x^{(i)} + \theta_0}{||\theta||} \right). $$
Let's again make sure our intuition about the margin holds. $$ \gamma^{(i)} = y^{(i)}\left( \frac{\theta^\top x^{(i)} + \theta_0}{||\theta||} \right). $$
The margin $\gamma^{(i)}$ is called geometric because it corresponds to the distance from $x^{(i)}$ to the separating hyperplane $\theta^\top x + \theta_0 = 0$ (dashed line below).
Suppose that $y^{(i)}=1$ ($x^{(i)}$ lies on positive side of boundary). Then:
Which is our geometric margin. The case of $y^{(i)}=-1$ can also be proven in a similar way.
We can use our formula for $\gamma$ to precisely plot the margins on our earlier plot.
# plot decision boundary and margins
plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6.1])
plt.ylim([2.25, 4])
# plot margin vectors
theta = clf.coef_[0]
theta0 = clf.intercept_
for idx in clf.support_[:3]:
x0 = X[idx]
y0 = iris_y2.iloc[idx]
margin_x0 = (theta.dot(x0) + theta0)[0] / np.linalg.norm(theta)
w = theta / np.linalg.norm(theta)
plt.plot([x0[0], x0[0]-w[0]*margin_x0], [x0[1], x0[1]-w[1]*margin_x0], color='blue')
plt.scatter([x0[0]-w[0]*margin_x0], [x0[1]-w[1]*margin_x0], color='blue')
plt.show()
We have seen a way to measure the confidence level of a classifier at a data point using the notion of a margin.
Next, we are going to see how to maximize the margin of linear classifiers.
In this lecture, we consider classification with linear models of the form: \begin{align*} f_\theta(x) & = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + ... + \theta_d \cdot x_d \end{align*} where $x \in \mathbb{R}^d$ is a vector of features and $y \in \{-1, 1\}$ is the target. The $\theta_j$ are the parameters of the model.
We can represent the model in a vectorized form \begin{align*} f_\theta(x) = \theta^\top x + \theta_0. \end{align*}
We define the geometric margin $\gamma^{(i)}$ with respect to a training example $(x^{(i)}, y^{(i)})$ as $$ \gamma^{(i)} = y^{(i)}\left( \frac{\theta^\top x^{(i)} + \theta_0}{||\theta||} \right). $$ This also corresponds to the distance from $x^{(i)}$ to the hyperplane.
We want to define an objective that will result in maximizing the margin. As a first attempt, consider the following optimization problem. \begin{align*} \max_{\theta,\theta_0,\gamma} \gamma \; & \\ \text{subject to } \; & y^{(i)}\frac{(x^{(i)})^\top\theta+\theta_0}{||\theta||}\geq \gamma \; \text{for all $i$} \end{align*}
This is maximies the smallest margin over the $(x^{(i)}, y^{(i)})$. It guarantees each point has margin at least $\gamma$.
This problem is difficult to optimize because of the division by $||\theta||$ and we would like to simplify it. First, consider the equivalent problem: \begin{align*} \max_{\theta,\theta_0,\gamma} \gamma \; & \\ \text{subject to } \; & y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq \gamma ||\theta|| \; \text{for all $i$} \end{align*}
Note that this problem has an extra degree of freedom:
To enforce uniqueness, we add another constraint that doesn't change the minimizer: $$ ||\theta|| = \frac{1}{\gamma}. $$ This ensures we cannot rescale $\theta$ and also asks our linear model to assign each $x^{(i)}$ a score of at least $\pm 1$: $$ y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq 1 \; \text{for all $i$} $$
If we constraint $||\theta|| = \frac{1}{\gamma}$ holds, then we know that $\gamma = 1/\theta$ and we can replace $\gamma$ in the optimization problem to obtain: \begin{align*} \max_{\theta,\theta_0} \frac{1}{||\theta||} \; & \\ \text{subject to } \; & y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq 1 \; \text{for all $i$} \end{align*}
The solution of this problem is still the same.
Finally, instead of maximizing $1/\theta$, we can minimize $\theta$, or equvalently we can minimize $\frac{1}{2}||\theta||^2$. \begin{align*} \min_{\theta,\theta_0} \frac{1}{2}||\theta||^2 \; & \\ \text{subject to } \; & y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq 1 \; \text{for all $i$} \end{align*}
This is now a quadratic program that can be solved using off-the-shelf optimization algorithms!
Later, we will see several other versions of this algorithm.
We saw that maximizing the margin amounts to solving the following optimization problem. \begin{align*} \min_{\theta,\theta_0} \frac{1}{2}||\theta||^2 \; & \\ \text{subject to } \; & y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq 1 \; \text{for all $i$} \end{align*}
This is now a quadratic program that can be solved using off-the-shelf optimization algorithms.
So far, we have assume that a linear hyperplane exists. However, what if the classes are non-separable? Then our optimization problem does not have a solution and we need to modify it.
Our solution is going to be to make each constraint "soft", by introducing "slack" variables, which allow the constraint to be violated. $$ y^{(i)}((x^{(i)})^\top\theta+\theta_0)\geq 1 - \xi_i. $$
In the optimization problem, we assign a penalty $C$ to these slack variables to obtain: \begin{align*} \min_{\theta,\theta_0, \xi}\; & \frac{1}{2}||\theta||^2 + C \sum_{i=1}^n \xi_i \; \\ \text{subject to } \; & y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\geq 1 - \xi_i \; \text{for all $i$} \\ & \xi_i \geq 0 \end{align*}
Let's further modify things. Moving around terms in the inequality we get: \begin{align*} \min_{\theta,\theta_0, \xi}\; & \frac{1}{2}||\theta||^2 + C \sum_{i=1}^n \xi_i \; \\ \text{subject to } \; & \xi_i \geq 1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right) \; \xi_i \geq 0 \; \text{for all $i$} \end{align*}
If $0 \geq 1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)$, we classified $x^{(i)}$ perfectly and $\xi_i = 0$
If $0 < 1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)$, then $\xi_i = 1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)$
Thus, $\xi_i = \max\left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right), 0 \right)$.
We simplify notation a bit by using the notation $(x)^+ = \max(x,0)$.
This yields: $$\xi_i = \max\left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right), 0 \right) := \left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+$$
Since $\xi_i = \left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+$, we can take \begin{align*} \min_{\theta,\theta_0, \xi}\; & \frac{1}{2}||\theta||^2 + C \sum_{i=1}^n \xi_i \; \\ \text{subject to } \; & \xi_i \geq 1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right) \; \xi_i \geq 0 \; \text{for all $i$} \end{align*}
And we turn it into the following by plugging in the definition of $\xi_i$: $$ \min_{\theta,\theta_0}\; \frac{1}{2}||\theta||^2 + C \sum_{i=1}^n \left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+ $$
Since it doesn't matter which term we multiply by $C>0$, this is equivalent to $$ \min_{\theta,\theta_0, \xi}\; \sum_{i=1}^n \left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+ + \frac{\lambda}{2}||\theta||^2 $$ for some $\lambda > 0$.
We have now turned our optimizatin problem into an unconstrained form: $$ \min_{\theta,\theta_0}\; \sum_{i=1}^n \underbrace{\left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+}_\text{hinge loss} + \underbrace{\frac{\lambda}{2}||\theta||^2}_\text{regularizer} $$
Consider again our new loss term for a label $y$ and a prediction $f$: $$ L(y, f) = \max\left(1 - y \cdot f, 0\right). $$
Let's visualize a few losses $L(y=1,f)$, as a function of $f$, including hinge.
# define the losses for a target of y=1
hinge_loss = lambda f: np.maximum(1 - f, 0)
l2_loss = lambda f: (1-f)**2
l1_loss = lambda f: np.abs(f-1)
# plot them
fs = np.linspace(0, 2)
plt.plot(fs, l1_loss(fs), fs, l2_loss(fs), fs, hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['L1 Loss', 'L2 Loss', 'Hinge Loss'])
plt.xlabel('Prediction f')
plt.ylabel('L(y=1,f)')
Text(0, 0.5, 'L(y=1,f)')
plt.plot(fs, hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])
<matplotlib.legend.Legend at 0x12e750a58>
The hinge loss is one of the best losses in machine learning!
We have seen a new way to formulate the SVM objective. Let's now see how to optimize it.
In this lecture, we consider classification with linear models of the form: \begin{align*} f_\theta(x) & = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + ... + \theta_d \cdot x_d \end{align*} where $x \in \mathbb{R}^d$ is a vector of features and $y \in \{-1, 1\}$ is the target. The $\theta_j$ are the parameters of the model.
We can represent the model in a vectorized form \begin{align*} f_\theta(x) = \theta^\top x + \theta_0. \end{align*}
The hinge loss for a label $y$ and a prediction $f$ is: $$ L(y, f) = \max\left(1 - y \cdot f, 0\right). $$
plt.plot(hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])
<matplotlib.legend.Legend at 0x12e931550>
Maximizing the margin can be done in the following form: $$ \min_{\theta,\theta_0, \xi}\; \sum_{i=1}^n \underbrace{\left(1 - y^{(i)}\left((x^{(i)})^\top\theta+\theta_0\right)\right)^+}_\text{hinge loss} + \underbrace{\frac{\lambda}{2}||\theta||^2}_\text{regularizer} $$
We can easily implement this objective in numpy
.
First we define the model.
def f(X, theta):
"""The linear model we are trying to fit.
Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional data matrix
Returns:
y_pred (np.array): n-dimensional vector of predicted targets
"""
return X.dot(theta)
And then we define the objective.
def svm_objective(theta, X, y, C=.1):
"""The cost function, J, describing the goodness of fit.
Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets
"""
return (np.maximum(1 - y * f(X, theta), 0) + C * 0.5 * np.linalg.norm(theta[:-1])**2).mean()
If we want to optimize $J(\theta)$, we start with an initial guess $\theta_0$ for the parameters and repeat the following update: $$ \theta_i := \theta_{i-1} - \alpha \cdot \nabla_\theta J(\theta_{i-1}). $$
As code, this method may look as follows:
theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:
theta_prev = theta
theta = theta_prev - step_size * gradient(theta_prev)
What is the gradient for the hinge loss with a linear $f$? $$ J(\theta) = \max\left(1 - y \cdot f_\theta(x), 0\right) = \max\left(1 - y \cdot \theta^\top x, 0\right). $$
Here, you see the linear part of $J$ that behaves like $1 - y \cdot f_\theta(x)$ (when $y \cdot f_\theta(x) < 1$) in orange:
plt.plot(fs, hinge_loss(fs),fs[:25], hinge_loss(fs[:25]), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss', 'Hinge Loss when $y \cdot f < 1$'])
<matplotlib.legend.Legend at 0x12ea6f940>
When $y \cdot f_\theta(x) < 1$, we are in the "line" part and $J(\theta)$ behaves a like $1 - y \cdot f_\theta(x)$
Our objective is $$ J(\theta) = \max\left(1 - y \cdot f_\theta(x), 0\right) = \max\left(1 - y \cdot \theta^\top x, 0\right). $$ Hence the gradient in this regime is: $$\nabla_\theta J(\theta) = -y \cdot \nabla f_\theta(x) = -y \cdot x$$ where we used $\nabla_\theta \theta^\top x = x$.
What is the gradient for the hinge loss with a linear $f$? $$ J(\theta) = \max\left(1 - y \cdot f_\theta(x), 0\right) = \max\left(1 - y \cdot \theta^\top x, 0\right). $$
What is the gradient for the hinge loss with a linear $f$? $$ J(\theta) = \max\left(1 - y \cdot f_\theta(x), 0\right) = \max\left(1 - y \cdot \theta^\top x, 0\right). $$
When $y \cdot f_\theta(x) = 1$, we are in the "kink", and the gradient is not defined!
We can define a "gradient" like function $\tilde \nabla_\theta J(\theta)$ for the hinge loss $$ J(\theta) = \max\left(1 - y \cdot f_\theta(x), 0\right) = \max\left(1 - y \cdot \theta^\top x, 0\right). $$ It equals: $$\tilde \nabla_\theta J(\theta) = \begin{cases} -y \cdot x & \text{ if $y \cdot f_\theta(x) > 1$} \\ 0 & \text{ otherwise} \end{cases} $$
Putting this together, we obtain a complete learning algorithm, based on an optimization procedure called subgradient descent.
theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:
theta_prev = theta
theta = theta_prev - step_size * approximate_gradient
Let's implement this algorithm.
First we implement the approximate gradient.
def svm_gradient(theta, X, y, C=.1):
"""The (approximate) gradient of the cost function.
Parameters:
theta (np.array): d-dimensional vector of parameters
X (np.array): (n,d)-dimensional design matrix
y (np.array): n-dimensional vector of targets
Returns:
subgradient (np.array): d-dimensional subgradient
"""
yy = y.copy()
yy[y*f(X,theta)>=1] = 0
subgradient = np.mean(-yy * X.T, axis=1)
subgradient[:-1] += C * theta[:-1]
return subgradient
And then we implement subgradient descent.
threshold = 5e-4
step_size = 1e-2
theta, theta_prev = np.ones((3,)), np.zeros((3,))
iter = 0
iris_X['one'] = 1
X_train = iris_X.iloc[:,[0,1,-1]].to_numpy()
y_train = iris_y2.to_numpy()
while np.linalg.norm(theta - theta_prev) > threshold:
if iter % 1000 == 0:
print('Iteration %d. J: %.6f' % (iter, svm_objective(theta, X_train, y_train)))
theta_prev = theta
gradient = svm_gradient(theta, X_train, y_train)
theta = theta_prev - step_size * gradient
iter += 1
Iteration 0. J: 3.728947 Iteration 1000. J: 0.376952 Iteration 2000. J: 0.359075 Iteration 3000. J: 0.351587 Iteration 4000. J: 0.344411 Iteration 5000. J: 0.337912 Iteration 6000. J: 0.331617 Iteration 7000. J: 0.326604 Iteration 8000. J: 0.322224 Iteration 9000. J: 0.319250 Iteration 10000. J: 0.316727 Iteration 11000. J: 0.314800 Iteration 12000. J: 0.313181 Iteration 13000. J: 0.311843 Iteration 14000. J: 0.310667 Iteration 15000. J: 0.309561 Iteration 16000. J: 0.308496 Iteration 17000. J: 0.307523 Iteration 18000. J: 0.306614 Iteration 19000. J: 0.305768 Iteration 20000. J: 0.305068 Iteration 21000. J: 0.304293
We can visualize the results to convince ourselves we found a good boundary.
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = f(np.c_[xx.ravel(), yy.ravel(), np.ones(xx.ravel().shape)], theta)
Z[Z<0] = 0
Z[Z>0] = 1
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.show()